ECFA Focus Topic: CKMWW

Uli Einhaus IDT-WG3-Phys Open Meeting 22./23.02.2024

- Use W decays to measure CKM matrix elements $\left| V_{ij} \right|$, ~ directly by counting
- Allows for direct, model-independent access to 6 CKM elements (without top)
- Of particular interest: $V_{\it cb}$, $V_{\it cs}$, $(V_{\it ub})$
 - test of unitarity of the CKM matrix
 - V_{cs} for comparison with indirect leptonic charmed meson decays
 - V_{cb} to resolve discrepancy between in- & exclusive determinations via semilep. B decays, controls unitarity triangle normalisation
 → already systematically limited at Belle!
 - V_{ub} as test of lattice QCD needed for results from Belle II
- With 100% reconstruction efficiency: $\delta_{V_{ij}}^{th} = \frac{1}{2} N_{ev}^{-1/2}$

⁸ W:

$W^- \rightarrow$	$ar{u}d$	$\overline{u}s$	$\overline{u}b$	$\bar{c}d$	\overline{cs}	$\overline{c}b$
BR	31.8%	1.7%	$4.5 imes 10^{-6}$	1.7%	31.7%	$5.9 imes 10^{-4}$
$N_{ m ev}$	64×10^6	$3.4 imes 10^6$	900	3.4×10^{6}	$63 imes 10^6$	$118 imes 10^3$
$\delta^{ ext{th}}_{V_{ij}}$	0.0063 %	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

• More details: <u>talk</u> by S. Monteil

• Team set up to define and work on study:

M. Bordone, UE, P. Goldenzweig, P. Koppenburg, Z. Ligeti, D. Marzocca, M. Selvaggi (<u>ECFA focus topics doc</u>, subscribe to <u>email list</u>)

- Determine ultimate precision prospects on matrix elements at Belle II and LHCb as well as future HTE factories
- Study application of flavour tagging tools and supplying algorithms (e.g. PID), including calibration methods and systematics

- Theory predictions needed!
 No sufficient higher-order corrections incl. QCD colour-reconnection at WW threshold or higher, good case for lattice QCD
- Identify quark flavours \rightarrow <u>flavour tagging tools</u>
 - LCFIPlus is well-established standard \rightarrow <u>first estimate</u> V_{cb} precision: 0.4%
 - a number of new taggers based on neural networks (<u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>) are being developed, full integration in key4HEP (hopefully) soon
 - \rightarrow first estimate V_{cb} precision: 0.15% (close to limit)
 - Important: calibration of flavour taggers, ideally at Z pole
- b, c-tagging need vertexing, well established tools part of reconstruction chains, profit from new tracking algorithms and hardware developments (ALICE ITS3)
- s-tagging needs PID, likely the reason why ILD and IDEA (with dE/dx / dN/dx) in particular are working on s-tagging, RICHs under discussion for CLD and SiD; new tool (<u>CPID</u>) being established

- Center of mass energies
 - threshold scan around 160 GeV interesting for W mass, rather low cross section, no contamination from ZZ
 - 250/240 GeV is default working point for Higgs factory and has a good WW cross section
 - at higher energies lower cross section, more boost which is probably helpful for vertexbased tagging, but less so for PID, at some point JER worsens
- Typical expected numbers of W at 250 GeV at ILC and 160 GeV at FCC-ee: O(10⁸)
 - ILC profits from ca. factor 2 due to polaristion
 - multiply with number of detectors for FCC-ee
- FCC-ee MC samples are needed
- ILD MC samples with full sim/reco exist, 250 GeV is ca. 12 ab⁻¹ (exceeds H-20 by >3 in each pol. channel) and good to go, 500 GeV is ca. 0.5 ab⁻¹ and missing some newer reconstruction aspects; might need dedicated samples for V_{ub}

- FCC: Nothing yet, benchmark case for flavour tagger by M. Selvaggi e.a. (IDEA)
- CEPC: <u>Talk</u> by T. Liu at CEPC Workshop Oct. 2023:

benchmark case for flavour tagger by M. Ruan e.a.

- A CEPC version will be very informative
- Relevant inputs are still missing
- A task for next stage work

- One analysis in ILC/ILD being set up by UE
 - use new <u>Comprehensive Particle ID</u> (CPID) for particle identification
 - use new <u>neural network tagger</u> (M. Meyer) for flavour tagging
 - use 250 GeV ILD MC production from 2020
 - target: statistical uncertainty on $|V_{ij}|$ including reconstruction efficiencies and backgrounds
 - focus on V_{cs} (impact of PID on s-tagging)
- CPID: calibration for ILD has been performed, is currently in <u>pull request</u> for ILDConfig for MarlinStandardRecoMiniDST.xml for 2020 MC production
- Aim is a tagged ilcsoft version end of March (?) incl. flavour tagger, potentially use this to make MiniDSTs of the full 2020 production
- In future reconstructions would become part of MarlinStandardReco.xml, next to LikelihoodPID

Work in progress

• First step of analysis: event categorisation and preselection, plots by A. Silva

inv. mass of PFOs wo. isolated leptons or photons, with and wo. overlay cuts

confusion matrix of event categorisation truth vs. reco

- Quarks from one W decay have colour connection
- But: also the quark pairs from WW can reconnect after both W decays (W decays: 0.1 fm vs. QCD: 1 fm) → impact on flavour needs careful consideration in theory and ongoing study
- Impact known from LEP: charged jet constituent multiplicity reduced by (probably) ~5% in hadronic WW compared to semileptonic WW, 2.8 σ effect still open for final discovery
- Effect seen in ILD MC data: ratio of ~0.94

from A. Moutoussi

Experiment	\sqrt{s}	Studied Quantity	Result
ALEPH	183 GeV		$1.31 \pm 0.74 \pm 0.37$
ALEPH	189 GeV	$\langle n_{\rm ch}^{\rm 4q}\rangle - 2 \langle n_{\rm ch}^{\rm qq\ell\bar\nu}\rangle$	$0.47 {\pm} 0.44 {\pm} 0.26$
L3	183 GeV		$-1.0 \pm 0.8 \pm 0.5$
OPAL	183 GeV		$0.7\pm0.8\pm0.6$
DELPHI	183 GeV	$\sqrt{2} 4q \sqrt{2} \sqrt{2} qq \ell \bar{\nu}$	$0.941 {\pm} 0.025 {\pm} 0.023$
DELPHI	189 GeV	$\langle n_{\rm ch} \rangle / 2 \langle n_{\rm ch} \rangle$	$0.977 {\pm} 0.017 {\pm} 0.027$

M. Hapke: QCD at LEP 2 and WW final state interactions

- Working group on CKM precision prospects from W decays set up, targets defined
- First study has started
- Looking for more people to join and carry out the task, ideal case for new flavour tagging tools!
- Contact us or sign up!

