WWdiff Focus Topic

ECFA workshops on e+e- Higgs/EW/Top factory

Jenny List
IDT-WG3 Open Physics Meeting
22 February 2024

WWdiff: Quick Overview

https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/WWdiff

Motivation

- Constraints on gauge boson interactions = crucial ingredients to global interpretations, be it in SMEFT or in UV complete models
- new physics contributions to aTGCs and Higgs can be closely connected => complementary approaches

Expert Team ("done")

- coordinated by: Jorge de Blas \& Alexander Grohsjean
- further members: Patrizia Azzi, Tim Barklow, Ansgar Denner, Wolfgang Kilian, JL, Frank Siegert
- 2 meetings in 2023: July 12, September 25

Now forming: team to work on this focus topic

- Leonhard Reichenbach (CERN, CLD), Andre Silva \& UE/JL (DESY, ILD), Jiayin Gu (Fudan, CEPC)
- coordinated by: Jorge de Blas \& Alexander Grohsjean

Previous Studies I

for future e+e-colliders

- Theory-level studies (Diehl et al ~2002!), optimal observables: most general set of CP conserving and CP violating triple-gauge boson couplings (28 real parameters!) can be constrained at a
 centre-of-mass energy of 500 GeV with polarised beams
-Detector-level simulations (Marchesini, Rosca, Barklow ~2011 ff):
- 500 GeV and 1 TeV ,
- joint extraction of 3 TGCs (LEP parametrisation) and beam poalrisations
- LO MC
- restricted to WW -> munuqq and WW->enuqq
- 3 TGCs and their covariance matrix passed on to global interpretations, e.g. SMEFT fits

$$
P\left(e^{+}, e^{-}\right)=(+1,-1)
$$

Previous Studies II

for future e+e-colliders

- Extrapolation to 250 GeV (Karl ~2018)
- More recently:
- statistical optimal observables for all the CP even interactions contributing at LO in SMEFT used in global fits, (but only) based on theory-level distributions (de Blas et al).
- detailed study of ability to reduce impact systematics by combined fits to differential cross sections of $2 f$ and 4 processes including many nuisance parameters at 250 GeV using LEP parametrisation (Beyer)

Goals

- Main objective:
understand the full potential of e+e-colliders wrt gauge boson interactions, using the full differential information from W-pair and single-W events
to extract CP even and CP odd couplings, based on detailed detector simulation with assessments of systematic uncertainties, at all centre-of-mass energies.
- Also important:
establish the complementarity with HL-LHC and to clarify gain expected at future e+e-colliders.

Theory state-of-the-art
 of this focus topic

- LEP2 times:
- differential cross section for W-pair production including W decays only known within the double-pole approximation,
- implemented in YFSWW and RacoonWW
- Later:
- complete electroweak O(alpha) corrections in the SM calculated for some charged-current four-fermion production processes
- available in unpublished Racoon4f.
- on top: also the LL ISR effects beyond O(alpha) in the structure-function approach
- SM extensions like the dimension-six SMEFT:
- doable thanks to UFO models at LO
- automated calculation of NLO QCD corrections via the UFO model SMEFT@NLO.
- automated calculation of NLO electroweak corrections will be completed and available in Madgraph and Whizard (expected to be large at high energies)

To-dos

where you can join!

- full detector simulation WW and single-W processes at all energies
- event selection - all channels, incl. qqqq and single-W (forward electrons!)
- reconstruction of decay and production angles and (statistically) optimal observables
- systematic uncertainties / nuisance parameters
- definition of interface between global interpretations and experimental studies, incl. systematics, nuisance parameters etc
- extension of global interpretations - and the required experimental inputs! - to CP violating couplings
- interplay / combination with HL-LHC - any chance of updated projections?
- simple PR message: which energy scales can we probe with these measurements?

Ressources to start from

is there more?

- last ILD qqInu analysis: https://github.com/ILDAnaSoft/ILDbench WWqqinu
=> Graham Wilson...
- recent MC samples in ILD available at 250 GeV
=> will soon convert to mini-DST [1] incl. latest particle ID and flavour tag informations
- available MC samples from other detector concepts?
[1] MiniDST: high-level reconstructed information and MC truth, root-readable, cf https://github.com/ILDAnaSoft/miniDST

Ressources to start from

is there more?

- last ILD qqInu analysis: https://github.com/ILDAnaSoft/LLDbench WWqqInu
=> Graham Wilson...
- recent MC samples in ILD available at 250 GeV
=> will soon convert to mini-DST [1] incl. latest particle ID and flavour tag informations
- available MC samples from other detector concepts?

Interested?

Sign up: http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=ECFA-WHF-FT-WWdiff
[1] MiniDST: high-level reconstructed information and MC truth, root-readable, of https://github.com/ILDAnaSoft/miniDST

First Steps - ALL WORK IN PROGRESS -

Channel classification via number / flavour of isolated leptons (Andre Silva)

- Number of reconstructed isolated leptons usind IsolatedLeptonTagger from MarlinReco/Analysis as provided on miniDST
- hadronic: 87\% no isolep found, 12\% a (fake) tau found
- leptonic: 77\% 2 isolep found, missing cases mostly taus
- taunuqq: 61\% tau found, $24 \% 0$ isolep found
- munuqq: 87\% mu found, 10% additional isolep found
- enuqq:
- large \# of very forward e from single-W diagrams
- theta >6.27 deg : 62\% e found 20\% no lep, 9% (fake) tau found, 8% additional iso lep found

First Steps - ALL WORK IN PROGRESS -

Channel classification - invariant mass of hadronic system (Andre Silva)

- invariant mass of all PFOs after removing found isolated leptons and isolated photons (ISR)

First Steps - ALL WORK IN PROGRESS -

Channel classification = invariant mass of hadronic system (Andre Silva)

- invariant mass of all PFOs after removing found isolated leptons and isolated photons (ISR)

First Steps - ALL WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

- vs polar angle for electron/positron (on eLpR sample, i.e. singleW dominated)

First Steps - ALL WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

- vs pt for electron/positron (on eLpR sample, i.e. singleW dominated)

First Steps - ALL WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

- vs pt for electron/positron (on eLpR sample, i.e. singleW dominated)

Looks worse than official CLD / ILD performance, however no cos(theta) cut applied here

First Steps - ALL WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

- vs pt for electron/positron (on eLpR sample, i.e. singleW dominated)

First Steps - ALL WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

- vs pt for electron/positron (on eLpR sample, i.e. singleW dominated)

Beyond the first steps

Interfacing experimental projections to global interpretation

- these analyses will proceed to
- select WW and singleW events from full SM background
- reconstruct W kinematics => production and decay angles (all five)
- how will we then interface to global fits?
- provide projections on differential cross-sections?
=> even 3D differential challenging in terms of MC statistic, 5D hopeless?
- optimal observables?
=> unclear how to treat systematic uncertainties - and in particular their reduction via nuisance parameters?
need a discussion here, to culminate into a concrete prescription which data
- format, binning, central values, statistical and systematical covariance matrices, ... -
should be provided for input to global fits?
=> next topical meeting of WWdiff?

Conclusions

and outlook

- work on WWdiff focus topic has started
- but coverage is "thin" and partiallly very short-term (eg master student)
$=>$ more active people very much welcome
$=>$ get in touch and/or sign up on mailing list
- tools, MC samples to get started are there
- more MC samples from other detectors would be highly welcome - coherent analysis of data from different detector concepts IS POSSIBLE thanks to Key4HEP
- need to define interface between experimental projections \& global fits

Conclusions

and outlook

- work on WWdiff focus topic has started
- but coverage is "thin" and partially very short-term (eg master student)
=> more active people very much welcome
=> get in touch and/or sign up on mailing list
- tools, MC samples to get started are there
- more MC samples from other detectors would be highly welcome - coherent analysis of data from different detector concepts IS POSSIBLE thanks to Key4HEP
- need to define interface between experimental projections \& global fits

Interested?

Sign up: http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=ECFA-WHF-FT-WWdiff

