What Is key4hep? Why And How To Get Started? Carsten Hensel, CBPF

UNIDADE DE PESQUISA DO MCTI

Physics Workflow

Physics Workflow

Most steps in a normal physics workflow require a suite of software tools.

Physics Workflow

Why?

key4hep

What?

How?

key4hep

What?

How?

- Future detector studies rely on well maintained software for studying their potential
- HEP software stack is ecosystem of interacting components
- Maintenance of a consistent HEP software stack is non-trivial
- (Human) resources are scarce
- Sharing the burden allows everybody to reap the benefits

key4hep Motivation

- Future detector studies rely on well maintained software for studying their potential
- HEP software stack is ecosystem of interacting components
- Maintenance of a consistent HEP software stack is non-trivial
- (Human) resources are scarce
- Sharing the burden allows everybody to reap the benefits

key4hep Motivation

key4hep Goals

- Provide and maintain consistent software stack that allows to do physics studies for all projects
- Ensure interoperability of the necessary building blocks
- Reuse existing solutions where possible (expertise from LHC and LC communities)
- Focus on new developments on EW/Higgs factory specifics
- Share knowledge, processes, workflows, and resources

Not a goal: develop and maintain project specific software and workflows.

key4hep

What?

How?

Why?

key4hep

How?

- Software stack that connects end extends individual packages towards a complete data processing framework for detector studies.
 - Fast/full simulation
 - Reconstruction
 - Analysis
- Components:
 - event data model: EDM4hep
 - Geometry information: DD4hep
 - Framework: Gaudi
 - Packaging and deployent: Spack

Gene	
Whiz Pythia	

What Is key4hep?

key4hep Stack

- Software provided in "stacks" deployed on cvmfs
- More than 500 packages (most are dependencies)
- Nightly builds in /cvmfs/sw-nightlies.hsf.org with the latest of the key4hep packages and other packages.
- CentOS 7, AlmaLinux 9 and Ubuntu 22.04 supported
- Releases in /cvmfs/sw.hsf.org with version of the package
- Easy setup with cvmfs:

Questions, problems, complaints and anything else related to packages happens in https://github.com/key4hep/key4hep-spack

source /cvmfs/sw-nightlies.hsf.org/key4hep/releases/setup.sh # Latest nightly source /cvmfs/sw.hsf.org/key4hep/releases/setup.sh *# Latest release*

key4hep Components: Generators

- Generators are just software packages
- For inclusion in key4hep a spack recipe is necessary
- Building and installing "trivial"
- Initial list from LCG stacks (LHC focussed)
- Many e⁺e⁻ additions since then

key4hep Components: DD4hep

- Originally for LC but targeting all of HEP from the start
- Complete detector description
- Simulation, reconstruction, analysis
- "Industry" standard: ILC, CLIC, FCC, CEPC, EIC, LHCb, CMS, ...
- Detectors that have been added recently:
 - IDEA
 - **IDEA** vertex detector
 - ALLEGRO
 - CLD with the ARC sub-detector

key4hep Components: EDM4hep

- Interoperability of different components requires a common language
- Based on LCIO and FCC-edm
 - Focus on usability in analysis
- Generated via podio
 - Supports prototyping of new datatypes
- Latest version: EDM4hep 0.10.99
- Currently finalizing v1 (backwards compatible from then)

key4hep Components: Gaudi Framework

- key4hep has adopted Gaudi as its experiment framework
 - Originally developed by LHCb, used by ATLAS, FCCSW
 - "Battle-proven" by LHC data taking
 - Several (legacy) flavors
- k4FWCore core functionality
 - Data service for EDM4hep
- Dedicated packages for different tasks
- Main guideline: Use EDM4hep for event data and DD4hep for detector description

key4hep Components: Gaudi Framework k4Gen for integration with generators

- Gaudi based core framework:

 - k4SimGeant4 for integration with Geant4
 - k4SimDelphes for integration with Delphes
 - k4FWCore provides the interface between EDM4hep and Gaudi
 - k4MarlinWrapper to call Marlin processors

Why?

key4hep

How?

Why?

key4hep

key4hep Users

- FCCSW adopted EDM4hep (switched FCC-edm)
- CEPCSW using EDM4hep and switched from Marlin to Gaudi
- CLIC and ILD reconstruction can be run in Gaudi

Where Do I Start?

- Tutorials, tutorials, tutorials
- There's bunch well documented tutorials available: <u>GitHub key4hep tutorials</u>
- Topics covered
 - EDM4hep
 - LCIO EDM4hep converters
 - Algorithms in key4hep using Gaudi
 - Plotting from files
- Feel free to ask questions / report issues about the tutorials via email or GitHub.

But What About My Marlin Processor?

- Do I have to re-write my Marlin processor?
- No need to re-do existing work: k4MarlinWrapper

- Wraps Marlin processors as Gaudi algorithms.
- Automatic, on-the-fly conversion between LCIO and EDM4hep
- Converter for xml -> py config files exists

Making the Switch

Gaudi EDM4hep

Conclusion

- key4hep provides a common software stack for all future collider projects
- Very successful in bringing together communities and focusing on common approaches
 - Common EDM4hep format with increasing maturity and adoption
 - DD4hep for detector description
 - Shared tools for building, developing and deploying software stack
- key4hep is ready to be used for future colliders studies now
- Still a lot of room for your contributions
 - Now is the ideal time to get onboard

Final Remarks/Resources

- key4hep documentation: https://key4hep.github.io/key4hep-doc/
- Regular meetings: https://indico.cern.ch/category/11461/
- Thanks to Thomas Madlener and Juan Carceller for providing inputs.

- <u>key4hep</u>
- EDM4hep
- DD4hep
- FCCSW
- k4FWCore
- k4SimDelphes
- k4MarlinWrapper

Additional Information

Spack for key4hep

- Spack is a package manager
 - Independent of OS
 - Builds all packages from source
- Originally developed by the HPC community
 - Emphasis on dealing with multiple configurations of the same package
- Basic building block is a formalized build procedure: spack recipe
 - Build instructions, dependencies versions and location of source code
 - ~6700 packages currently available from spack
 - key4hep maintains repository with additional packages
- The whole key4hep software stack can be built from scratch using: spack install key4hep-stack

podio as generator for EDM4hep

- Traditionally HEP C++ EDMs are heavily Object Oriented
- Use podio to generate thread safe code starting from a hight level description
- Provide an easy to use interface to the users
- AIDASoft/podio

Generator Interoperability

- Majority of generators comes as standalone executables.
- Some have callable interfaces
 - Pythia, EvtGen, Herwig, ...
- Interoperability requires common, well defined, data formats or interfaces
 - Fully hadronized outputs in HEPMC3, EDM4hep for simulation
 - API can also be accommodated
- k4Gen offers several readers and tools to work on MC events
 - Particle gun, particle filters, vertex smearing, ...

key4hep Components: Generators available via Spack

• Generators

babayaga*†	baurmc ⁺	bhlumi*†
gosam [†]	guinea-pig*†	herwig3
photos	pythia6 ⁺	pythia8
tauola [†]	vbfnlo	whizard

"Generator tools"

agile [†]	alpgen [†]	\mathtt{ampt}^{\dagger}	apfel [†]	ccs-qcd [†]	chaplin [†]
$collier^{\dagger}$	$cuba^{\dagger}$	$dire^{\dagger}$	feynhiggs [†]	$form^{\dagger}$	hepmc
hepmc3	heppdt	hoppet ⁺	hztool [†]	lhapdf	lhapdfsets [†]
looptools	openloops	professor [†]	prophecy4f [†]	qd ⁺	qgraf [†]
recola [†]	rivet	syscalc [†]	thepeg	unigen ⁺	yoda

• Currently the latest version of each package is installed in Key4hep stack

Installed with current Key4hep stack

- * Available from key4hep-spack repository
- [†] Single version only

crmc[†] evtgen

herwigpp⁺

sherpa

kkmcee* starlight[†] genie[†]

madgraph5amc superchic[†]

