

Status of TPC with GEM and Micromegas for CEPC Detector R&D

Huirong Qi

Yue Chang, Xin She, Liwen Yu, Zhi Deng, Jian Zhang, Manqi Ruan, Jianchun Wang Guang Zhao, Linghui Wu, Gang Li

> LCTPC Collaboration Meeting March 12-14, 2024, DESY

- Brief reminder about CEPC in China
- Physics requirements of track detector
- Ion backflow suppression using GEM/Micromegas
- High granularity readout TPC for CEPC TDR
- Summary

- CEPC proposal R&D from 2013-2024, over ten years
- The CEPC accelerator TDR (**released**) and phy./det. TDR (**preparation**).

2012 discovery of the Higgs boson

Kick-off on Sept. 13, 2013 inspired by the discovery of the Higgs boson at the LHC CEPC study group formed in Beijing Accelerator, Physics and Detector groups PreCDR released , March 2015 CDR released , November 2018 1st Funding from MOST in 2016 2nd Funding from MOST in 2018 3rd Funding from MOST in 2023 Accelerator TDR released in 2023. Phy.&Det. TDR was prepared and will be released in 2025.

Brief reminder about CEPC

- CEPC operation stages: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Auxiliary requirements, if any, are optional.

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2 × 10⁷ Gy [11].

Physics requirements on future circular e+e- collider

- Performance & Physics benchmarks: defined
- PFA is essential:
 - BMR < 4% & pursue 3%
 - Highly relevant and even as the pre-request for excellent JOI & Pid (in jets)

	Processes @ c.m.s.	Domain	Total Det. Performance	Sub-D
H->ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + JOI (Jet origin id)	All sub-D, especially VTX
Vcb	WW@ 240/160 GeV	Flavor	JOI + Particle (lepton) id	All
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + JOI	All
α_{S}	Z->tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id	ECAL + Tracker material
B->DK	91.2 GeV	Flavor	PFA + Particle (Kaon) id	All, especially Tracker & ToF
Weak mixing angle	Z	EW	IOI	All
Higgs recoil	IIH	Higgs	Leptons id, track dP/P	Tracker, All
H->bb, cc, gg	vvH	Higgs	PFA + JOI	All
	qqH	Higgs	PFA + JOI + Color Singlet id	All
H->inv	qqH	Higgs/NP	PFA	All
H->di muon	qqH	Higgs	PFA, Leptons id	Calo, All
H->di photon	qqH	Higgs	PFA, Photons id	ECAL, All
			-	
W mass & Width	WW@160 GeV	EW	Beam energy	NAN
Top mass & Width	ttbar@360 GeV	EW	Beam energy	NAN
Bs->vvPhi	Z	Flavor	Object in jets; MET	All
Bc->tauv	Z	Flavor	-	All
B0->2 pi0	Z	Flavor	Particle/pi-0 in jets	ECAL

Table from Manqi's talk on IAS2024 conference in January

Motivation: TPC technology for the future e+e- colliders

- A TPC is the main tracking detector for some candidate experiments at future e+e- colliders
 - Baseline detector concept of CEPC and ILD at ILC
- Pixelated readout TPC is potential to **improve PID requirements of Flavor Physics** at e+e- collider.
- TPC technology can be of interest for other future colliders (FCC-ee, EIC, KEKb...)

https://arxiv.org/abs/2203.06520 Huirong Oi

Need control the ions in TPC chamber

- Simulation results based on CEPC's parameters (**High luminosity at Z pole: 10**³⁶)
- To investigate and create the massive electrons/ions in the detector chamber to study the deviation
 - Positive ion feedback at Tera-Z (gain ~2000, IBF ratio ~0.1%)
- MDI region should be carefully designed and optimized (beam-gas, pair production)

Electric field analysis

Cylindrical coordinates

 $\rho_{m}(\mathbf{r}',\mathbf{z}') = \frac{1}{2\pi} \oint \frac{\rho(\mathbf{r}',\theta',\mathbf{z}')}{\epsilon_{0}} \mathrm{e}^{-\mathrm{i}m\theta} d\theta'$

$$\begin{split} \phi(r,\theta,z) &= \sum_{m=-\infty,\infty} \phi_m(r,z) \mathrm{e}^{im\theta}, \\ \phi_m(r,z) &= \int_{-\infty}^{\infty} \Phi_m(r,k) \mathrm{e}^{ikz} dk, \\ \vec{\nabla} \cdot \vec{E} &= \frac{\rho}{\varepsilon} \longrightarrow \\ & \Phi_m(r,k) = K_m(kr) \int_0^r R_m(r',k) \, I_m(kr') \, r' dr' \\ &+ I_m(kr) \int_r^{\infty} R_m(r',k) \, K_m(kr') \, r' dr' \\ &R_m(r',k) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_m(r',z') \, \mathrm{e}^{-ikz'} dz' \end{split}$$

Resnati F. Modelling of dynamic and transient behaviours of gaseous detectors[J]. 2017.

-0.04^{[1}

-0.05

z [mm]

unit: n

=0.700 =0.600 =0.500

7

Talk of simulation on 12nd

• Ion backflow suppression using GEM/Micromegas

Motivation: TPC requiremetns from e+e- Higgs/EW/Top factories

- TPC can provide hundreds of hits with high spatial resolution compatible, with PFA design (low X_0)
 - $\sigma_{1/pt} \sim 10^{-4}$ (GeV/c)⁻¹ with TPC alone and $\sigma_{point} < 100 \mu m$ in r ϕ
- Provide dE/dx and dN/dx with a resolution <4%
 - Essential for Flavor physics @ Tera Z run

TPC detector module using GEM+Micromegas@IHEP

- Studies have been done using the different active area of the hybrid TPC detector modules
 - Active area: from 50 mm \times 50 mm to 200 mm \times 200 mm
 - Tested under the different mixture gases
- Validated IBF×Gain using the TPC detector module
 - IBF \times Gain $\leq 1 @$ Gain/2000

TPC detector module using GEM+Micromegas

TPC detector module using GEM+Micromegas

- Studies with hybrid GEM+MM detectors
 - Studies MPGD gas gain<2000, IBF \times Gain ≤ 1
- sPHENIX R&D with 2GEM+MMG
- USTC with Double mesh Micromegas detector module

IBF of double mesh MM @USTC/Jianbei Liu

Hybrid GEM+Micromegas and Double-meshs detector module

CEPC TPC detector prototyping roadmap

- From TPC module to TPC prototype R&D for beam test
 - Low power consumption FEE ASIC (reach <5mW/ch including ADC)
- Achievement by far:
 - Supression ions hybrid GEM+Micromegas module
 - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ by TPC prototype
 - dE/dx for PID: <4% (as expected for CEPC baseline detector concept)

Low power consumption readout

- High granularity readout TPC for CEPC TDR
 - TPC **SELECTED** as the baseline track detector

Track detector system (Finalized Geometry in CEPC Phy.&Det. TDR)

- The track detector system's geometry was finalized.
 - The limited schedule for TDR preparation
 - Converging geometries as quickly as possible in preparation for physics simulation

TPC detector (Finalized Geometry in CEPC Phy.&Det. TDR)

Almost finalized Geometry of TPC detector and the Endplate

High granularity readout -1 $@\cos\theta \approx 0.98$

Parameters	Higgs run	Z pole run	
B-field	3.0T	2.0T	
Pad size (mm)/All channels	1.0mm×6.0mm/2×10 ⁶	1.0mm×6.0mm/2×10 ⁶	
Material budget barrel	\simeq 0.012 X ₀	\simeq 0.012 X ₀	
Material budget endcap	< 0.17 X ₀	< 0.17 X ₀	
Points per track in rφ	200	200	
σ _{point} in rφ	≤ 100µm (full drift)	150μm (full drift)	
σ _{point} in rz	≃ 0.4 – 0.8 mm (for zero – full drift)	? (for zero – full drift)	
2-hit separation in rq	< 2mm	< 2mm	
dE/dx	4 %	4 %	
Momentum resolution normalized:	a = 1.82 e -5	a = 3.32 e -5	
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.60 e -3	b = 0.92 e -3	

High granularity readout -2 $(a)\cos\theta \approx 0.98$

Parameters	Higgs run	Z pole run	
B-field	3.0T	2.0T	
Pad size (mm)/All channels	0.110mm×0.110mm /2×6×10 ⁸ (TPX4)	0.110mm×0.110mm /2×6×10 ⁸ (TPX4)	
Material budget barrel	$\simeq 0.012 \text{ X}_0$	\simeq 0.012 X ₀	
Material budget endcap	< 0.20 X ₀	< 0.20 X ₀	
Points per track in rφ	22000	22000	
σ _{point} in rφ	≤ 100µm (full drift)	? (full drift)	
σ _{point} in rz	$\simeq 0.1 - 0.5 \text{ mm}$? (for zero – full drift)	? (for zero – full drift)	
2-hit separation in r ϕ	< 0.5mm	< 0.5mm	
K/ π separation power @20GeV	≤ 3 σ	≤ 3 σ	
Momentum resolution normalised:	a = 1.82 e -5	a = 3.32 e -5	
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.60 e -3	b = 0.92 e -3	

High granularity readout -3 $@\cos\theta \approx 0.98$

Parameters	Higgs run	Z pole run	
B-field	3.0T	2.0T	
Pad size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷	
Material budget barrel	$\simeq 0.012 \text{ X}_0$	$\simeq 0.012 \text{ X}_0$	
Material budget endcap	< 0.20 X ₀	< 0.20 X ₀	
Points per track in rq	2200	2200	
σ _{point} in rφ	≤ 100µm (full drift)	? (full drift)	
σ _{point} in rz	≃ 0.1 – 0.5 mm? (for zero – full drift)	? (for zero – full drift)	
2-hit separation in rq	< 0.5mm	< 0.5mm	
K/ π separation power @20GeV	≤ 3 σ	≤ 3 σ	
Momentum resolution normalised:	a = 1.82 e -5	a = 3.32 e -5	
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.60 e -3	b = 0.92 e -3	

Power Consumption – TPC

- Power consumption relative with the high granularity readout
 - Pad readout TPC@1mm×6mm@IHEP
 - Total channels: **10**⁶
 - WASA ASIC chip: 3.5mW/ch@40 MS/s
 - High granularity readout TPC: 3×10^7
 - Total power: <10 kW
 - <100mW/cm²

	AGET	PASA+ALTRO	Super-ALTRO	SAMPA
TPC	T2K	ALICE	ILC	ALICE upgrade
Pad尺寸	6.9x9.7 mm ²	$4x7.5 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
通道数	1.25 x 10 ⁵	5.7x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
读出结构	MicroMegas	MWPC	GEM/MicroMegas	GEM
增益	0.2-17 mV/fC	12 mV/fC	12-27 mV/fC	20/30 mV/fC
成型方式	$CR-(RC)^2$	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴
达峰时间	50 ns-1us	200 ns	30-120 ns	80/160 ns
ENC	850 e @ 200ns	385 e	520 e	482 e @ 180ns
波形采样方式	SCA	ADC	ADC	ADC
采样率	1-100 MSPS	10 MSPS	40 MSPS	10 MSPS
精度	12 bit(external)	10 bit	10 bit	10 bit
功耗	<10 mW/ch	32 mW/ch	47.3 mW/ch	17 mW/ch
CMOS工艺	350 nm	250 nm	130 nm	130 nm

Simulation of the pixelated TPC - ongoing

- All detailed simulation **starting** at IHEP using Garfied++ and Geant4 lacksquare
 - Setup the new simulation framework

Talk of simulation on 13rd March

TPC detecror module simulated **under 2T and T2K gas** from CEPC CDR

Simulation/Digitization

Current R&D effort: Pixelated TPC R&D for CEPC

- **R&D on Macro-Pixel TPC readout for CEPC**
 - Macro-Pixel TPC ASIC chip was started to developed and **2nd prototype wafer has done**.
 - The first version ROIC has been received and under testing.
 - The **TOA and TOT** can be selected as the initiation function in the ASIC chip.
 - $1 \text{mm} \times 6 \text{mm} \rightarrow 500 \mu \text{m} \times 500 \mu \text{m}$ pixel readout
 - Time resolution: **14bit** (5ns bin)
 - Time discriminator: TOA (Time of Arrival)
 - Power consumption: <1mW/pixel (1st prototype)
 - ~400mW/cm²
 - ~100mW/cm² (Goal and final design)
 - Technology: 180nm CMOS -> 60nm CMOS
 - High metal coverage: 4-side bootable

1st readout PCB board and the ASIC layout

Huirong Qi

- TPC detector prototype using the pad have been developed for the future e+e- colliders.
- Is it necessary to optimize the readout pad size to reach a reasonable readout number?
 - Power consumption relative with the high granularity readout
 - Amount output detector data relative with the high granularity readout
- Optimization performance of the reasonable readout TPC
 - PID requirements for both Higgs physics and Z-physics
- Synergies with LCTPC/CEPC/FCCee/EIC allow us to continue R&D and ongoing, we learn from all of their experiences.

We kindly acknowledge the following funding agencies, collaborations:

- > National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400)
- National Natural Science Foundation of China (Grant NO.: 11975256)
- National Natural Science Foundation of China (Grant NO.: 11535007)
- National Natural Science Foundation of China (Grant NO.: 11775242)
- National Natural Science Foundation of China (Grant NO.: 11675197)

Many thanks!