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◼ The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start 
operation in 2030s, as an e+e- Higgs / Z Factory.

◼ To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of 
flavor physics & QCD, and probes of physics BSM.

◼ It is possible to upgrade to a 𝒑𝒑 collider (SppC) of 𝒔 ~ 100 TeV in the future.

The Circular Electron Positron Collider
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CEPC 4th concept detector
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A drift chamber with cluster counting technique to provide PID



Readout

Cluster counting in gaseous detectors

◼ In time
◼ Time measurement in small drift cells of DC

◼ Challenging of fast-shaping electronics (~ns 
needed)

◼ De-couple the charge collection from the cluster 
counting altogether

◼ →optical, with ~(sub) ns continuous readout 
sensors

◼ In space
◼ Resolve clusters in space by high granularity TPC

◼ Challenging of the low power consumption 
electronics (>40 mV/fC needed at 2000 of gas gain)

◼ Pixelated readout – high granularity

◼ →the reasonable pixilation reveals the underlying 
cluster structure in 3D chamber
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➢ Cluster counting: Measure individual ionization clusters instead of dE/dx, could significantly reduce the uncertainty



Preliminary DC layout
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• Full length: 5800 mm
• Barrel coverage: |cosθ| < 0.85
• Radius: 600 – 1800 mm
• Support: 8x8 carbon fibre frame
• Endcap: 25 mm Al plate



Challenges for DC with CC

◼ Challenges for cluster counting
◼ Detector design: Detector layout, cell size, 

working gas with low drift velocity, low 
ionization density, low diffusion and low 
cluster size

◼ Fast electronics: Bandwidth > 1 GHz, gain > 
10, sampling rate > 1.5 GS/s, bit resolution 
> 12 bit

◼ Reconstruction: Efficient primary clusters 
detection from waveforms in high pile-up 
and noisy environments

◼ Challenges for large volume DC
◼ Electrostatic stability: L ~ 6m, need wire 

material studies
◼ Data reduction: ~1 TB/s (Z-pole), need 

online data reduction
◼ Power consumption/cooling design
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➢ Detector optimization
➢ Prototype experiments

➢ Deep learning algorithm

➢ Finite element analysis

• Need to do



Detector design and 
performance
• Simulation

• Reconstruction

• Mechanics
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Waveform-based simulation
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Preamplifier Noise Waveform

Induced signalDC cell

Develop sophisticated software 
tools for DC PID simulation

Simulation Test beam

Tuned MC is 
comparable to data

(page 20)



Traditional reconstruction algorithm

10

Reconstruction: Each primary and secondary 
electrons forms a peak in the waveform. Need 
to determine the # of primary peaks.

Peak finding: Detect all electron peaks

• Taking 1st and 2nd order derivatives

• Peak detection by threshold passing

Clusterization: Merge electrons to form clusters

• Merge peaks within [0, tcut)

• The tcut is related to diffusion

◼ Pros: Fast and easy to implement

◼ Cons: Suboptimal efficiency for highly pile-up and noisy waveforms Deep learning 



Deep learning reconstruction algorithm
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• Traditional algorithm:
• Use partial information of the raw waveform
• Require human input prior knowledge

• Supervised learning could be more powerful because
• make full use of the waveform information 
• automatically learn characteristics of signals and noises from large labeled samples



Supervised model for simulated samples
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~10% improvement on K/π
separation power with ML 
(equivalent to a detector 
with 20% larger radius)

For 1 m track length



Domain adaptation model for data samples
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Main challenges:
• Discrepancies between data and MC
• Lack of labels in experimental data

Domain adaptation



PID performance
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K/π separation power:

For 1.2 m track length (cosθ = 0)
• K/pi separation  = 3.1 σ @ 20 GeV/c
• Resolution < 3% for K/π momentum > 5 GeV/c



Support structure design
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• Carbon fiber frame structure, including 8 longitudinal hollow 
beams and 8 annular hollow beams

• Thickness of inner CF cylinder: 200 μm/layer * 16 layers = 3.2 mm
• Effective outer CF frame structure: 1.8 mm
• Thickness of end Al plate: 25 mm 



Wire tensions
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Finite element analysis
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25 mm endcap thickness:
• Max. stress: 20.9 MPa
• Deformation: 2.5 mm for endcap, 1.4 mm for CF frame



Summary of DC performance

18

(X0)



Prototype experiments
• Test beam

• β source
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Test beam experiments at CERN
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Beam tests organized by INFN group (leaded by Franco Grancagnolo 
and Nicola De Filippis)：
◼ Two muon beam tests performed at CERN-H8 (βγ>400) in Nov. 2021 

and July 2022.
◼ A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN.
◼ Ultimate test in 2024 with π and K (βγ = 10-14) to fully exploit the 

relativistic rise.

Contributions from IHEP group:
◼ Participate data taking and collaboratively analyze the test beam data
◼ Develop the deep learning reconstruction algorithm

See Nicola De Filippis’s talk at the CEPC Workshop for details

https://indico.ihep.ac.cn/event/19316/contributions/143558/attachments/72684/88566/DeFilippis_DCH_status.pdf


Prototype experiment at IHEP

◼ Diameter of the tube: 30 mm

◼ Working gas: He/iC4H10=90:10

Experiment layout
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CC signal observed with
• low noise
• high bandwidth
• fast risetime: ~ns

Also done the test beam at BEPC2 with 
1.3 GeV electron beams. Analysis ongoing.



Electronics development

22

• High bandwidth current sensitive 
preamplifiers based on LMH6629 have been 
designed and developed

• Tested with detector prototype and digitizer 
(DT5751) with 1 GHz sampling rate



Summary
◼ Preliminary DC design

◼ PID performance: >3σ K/π separation at 20 GeV/c for 1.2 m track length
◼ Mechanical stability: Stable with FEM simulations 

◼ Reconstruction
◼ 10% improvement on K/π separation for supervised model
◼ Domain adaption model for experimental data

◼ Experiments
◼ Fast electronics development and prototype test at IHEP: observe CC signals
◼ International collaboration on test beam experiments

◼ Plans
◼ Fine detector optimization
◼ Optimize deep learning algorithm and FPGA implementation
◼ Electronics developments and experiments
◼ Mechanical design and tests
◼ Physics benchmarks
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Backup
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Energy loss measurement: dE/dx
◼Main mechanism: Ionization of charged tracks

◼Traditional method: Total energy loss (dE/dx)
◼ Landau distribution due to secondary ionizations

◼ Large fluctuation from many sources: energy loss, amplification …

25

“Lehraus” Plot 2021*

• Fit by Lehraus 1983:
• dE/dx res. = 5.7 * L-0.37 (%)

• Fit in 2021:
• dE/dx res. = 5.4 * L-0.37 (%)

• No significant improvement in the past 40 years

* From Michael Hauschild’s talk @ RD51 workshop

Integrated charge



Cluster counting by time

◼Alternatively, counting primary clusters
◼ Poisson distribution ➔ Get rid of the secondary ionizations

◼ Small fluctuation ➔ Potentially, a factor of 2 better resolution than dE/dx
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Counting clustersWaveform

Primary clusters

Require fast electronics and 
sophisticated counting algorithm

CC is extremely powerful, 
proposed in ILC, FCC-ee, CEPC

CC truth
dE/dx truth

K/π separation power
CC vs dE/dx



Gas mixture
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Gas property for CC:
• Small 𝜌𝑐𝑙 ➔ less statistics, large 

time separation
• Slow 𝑣𝑑 ➔ large time separation
• Small 𝜎𝑑 ➔ less likely double-

counting

• He 90% + iC4H10 10% is better for 
high momentum



Inner radius
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• Large thickness is better for PID ➔ From 2.8σ to 3.1σ even 3.3σ @ 20 GeV/c
• Smaller inner radius is better for tracking resolution, but more challenge on 

engineering and more beam backgrounds



Tensile load on support structures
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K/𝜋 separation power

Good consistent to full simulation

Physics study with Delphes

◼ Delphes: A C++ framework, performing a fast multipurpose 
detector response simulation

◼ 102~103 faster than the fully GEANT-based simulations

◼ Sufficient and widely used for phenomenological studies

◼ Develop dedicated PID modules (CC and TOF) and perform 
quick physics studies

30



Study of 𝐁(𝐬)
𝟎 → 𝐡+𝐡′

−

◼ Motivation

◼ Rich physics programs in B(s)
0 → h+h′− decays

◼ Time-dependent asymmetry, direct CP violation, lifetime measurement, …

◼ Good test bed to study impact of PID in flavor physics

◼ Explore physics potential of Tera-Z 
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• Significantly 
improved SNR 
with PID

• More detailed 
studies ongoing

Without PID

𝐵0 → 𝜋+𝜋−

𝐵0 → 𝐾+𝜋− 𝐵𝑠
0 → 𝐾+𝐾−
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