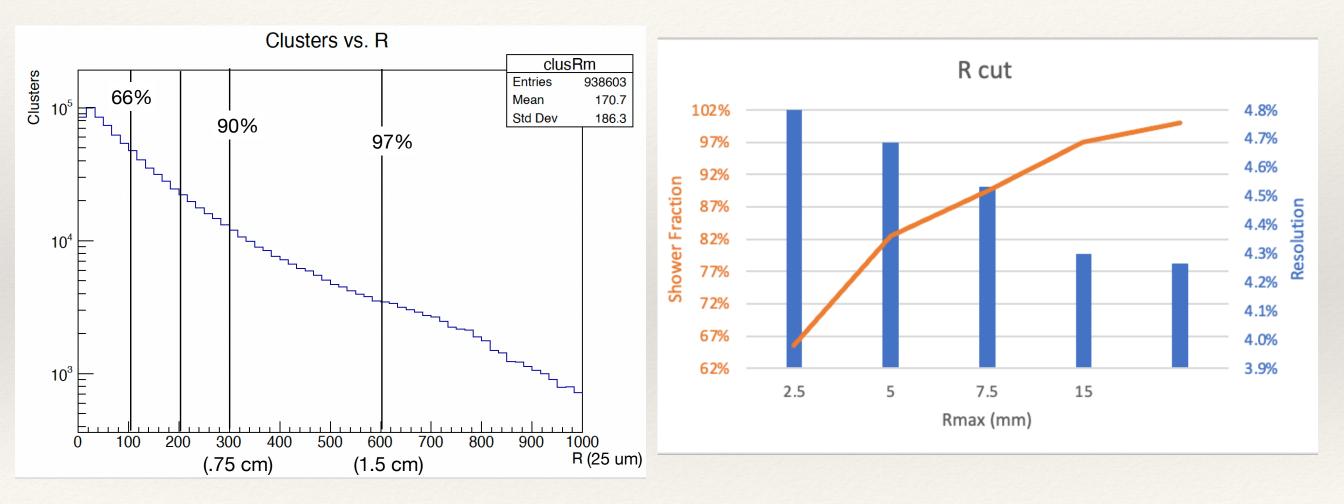

• SiD • Two recent studies of SiD Digital ECal measurements

- * 1. Effect of transverse cutoff of shower on energy measurement
 - * Motivated by question to Alex Habib at recent conference.
 - Cutoff in radius or cutoff in one direction.
- * 2. Timing measurements in SiD ECal MAPS
 - * Update my ECal studies to include timing.
 - * Study effect of MAPS response time.

• $\int_{i} D$ • 1. Effect of cutoff of shower on energy measurement

- Alex Habib reported he was asked a question when he gave an update on the SLAC MAPS work at the EP R&D WP1.2 general meeting on Monday 20 Nov.
 - Alex reported "I got a question on the Digital MAPS for ECAL : 'wouldn't we lose information if there is a pileup of 2 or more events per pixel.' I replied that it depends on the hit rate, the pixel size, and the cluster size, and I referred them to Jim's paper where the effect of cluster size was studied."
- * Motivated by this question, I followed up with these studies.
 - * First response only a few percent of pixels contain more than one hit.
 - * Remaining question what about interference from nearby showers?
 - * Cut-off of shower radially or in one direction.

• $\widehat{S_i D}$ • Transverse Shower Profile (10 GeV γ)

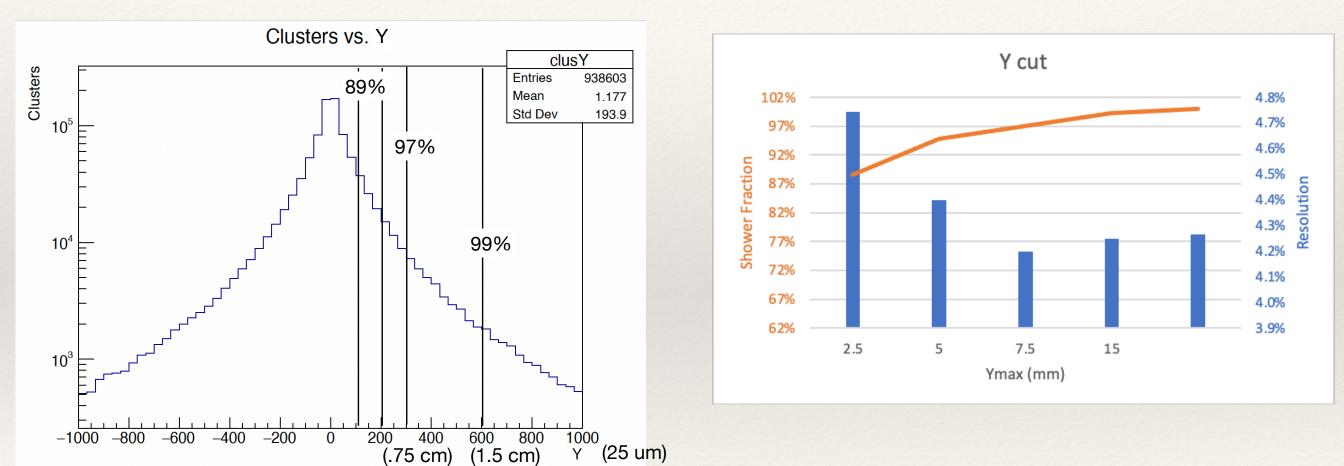

Transverse Shower Profile ($10 \text{ GeV } \gamma$)

Shower Clusters EMdistplot0Scat 10⁵ 10⁴ 10³ 10² 10-3 cm 200 <150 coro100 50 $0 \\ -50 \\ -100 \\ -150 \\ -200_{-1000} \\ 800^{-600} \\ -600^{-400} \\ -200 \\ 0 \\ 200 \\ 400 \\ 600 \\ 800^{-600} \\ 600 \\ 800^{-600} \\ -200 \\$

Hits inside
R = 600 Y
= 1.5 cm
colored red

• Si D

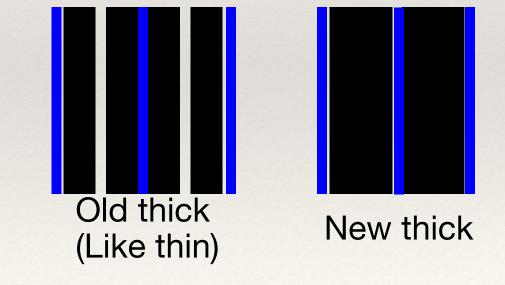
Effect of limited shower radius (10 GeV γ)

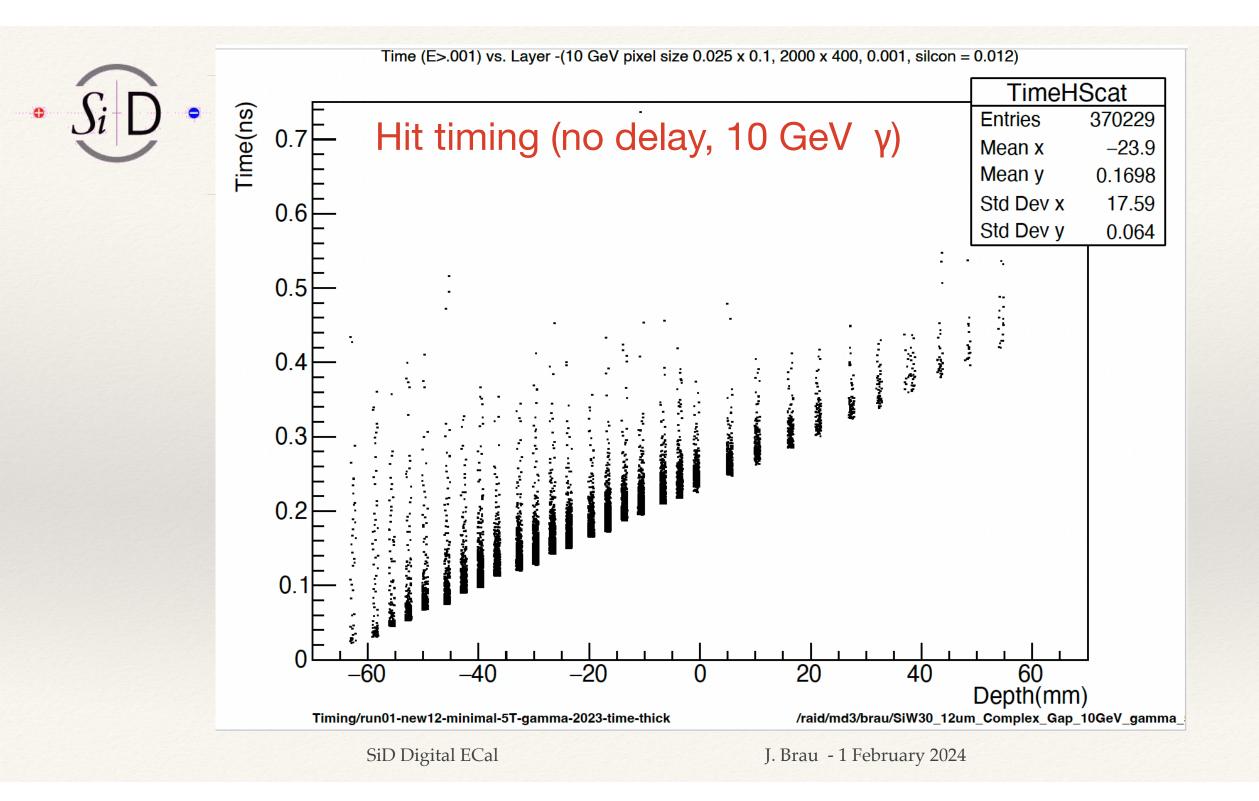


Transverse Shower Profile ($10 \text{ GeV } \gamma$)

Shower Clusters EMdistplot0Scat 10⁵ 10⁴ * Hits inside 10³ 10² = -0.75 cm 10colored red 200 <150 coro100 50 $\begin{array}{c} 0 \\ -50 \\ -100 \\ -150 \\ -200 \\$

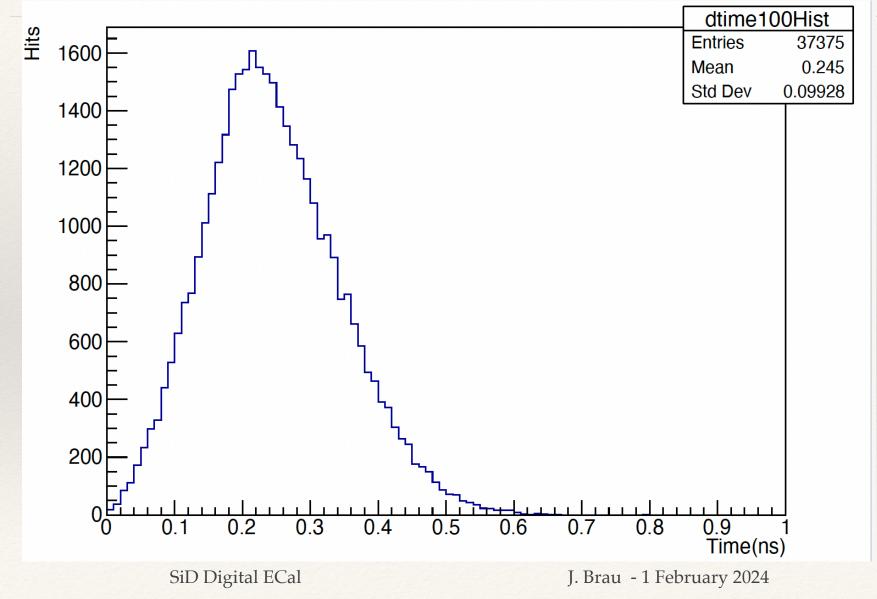

Y > -300


• $\widehat{S_i | D}$ • Effect pf limit shower in one direction (10 GeV γ)

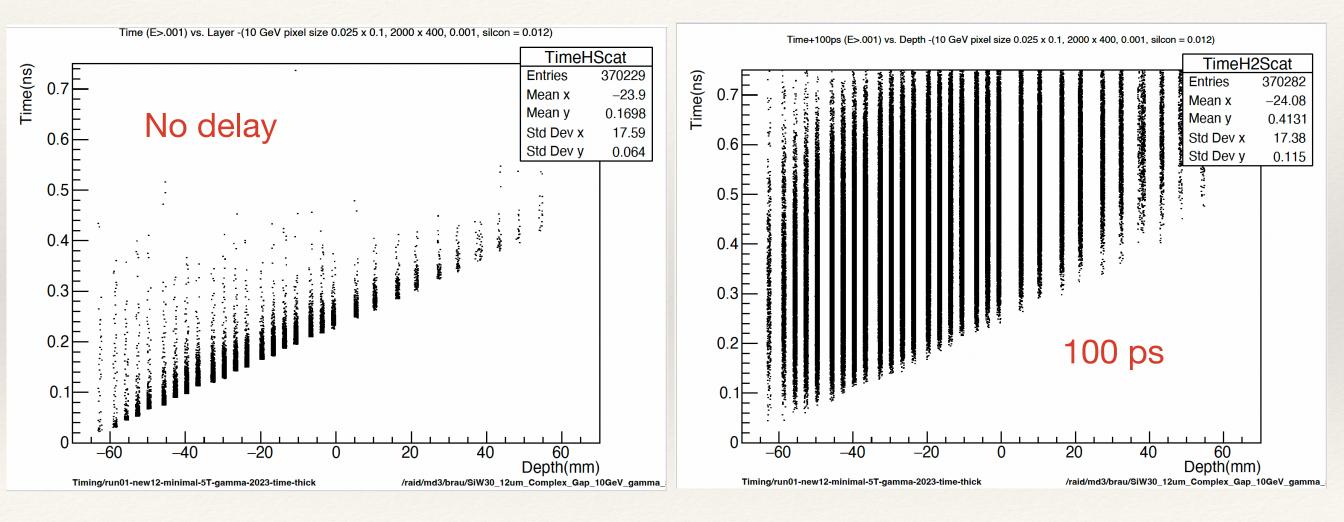


2. Timing measurements in SiD ECal MAPS

- * Updated my Geant4 model of the SiD ECal to extract hit times.
- * Also **modified geometry** to more precisely model **thick layers**.
 - * Past model used 40 thin layers, ignoring every other layer in last 20. (Simple)
 - * New model has 20 thin and **10 thick layers**.
 - * Since thick layers are **1 mm thinner** (only one gap) timing is affected.
- Geant4 TestEm3 files revised to implement timing and improved thick layers:
 - RunAction.cc
 - * SteppingAction.cc
 - DetectorMessenger.hh
 - DetectorMessenger.cc
 - DetectorConstruction.hh
 - DetectorConstruction.cc


• SiD

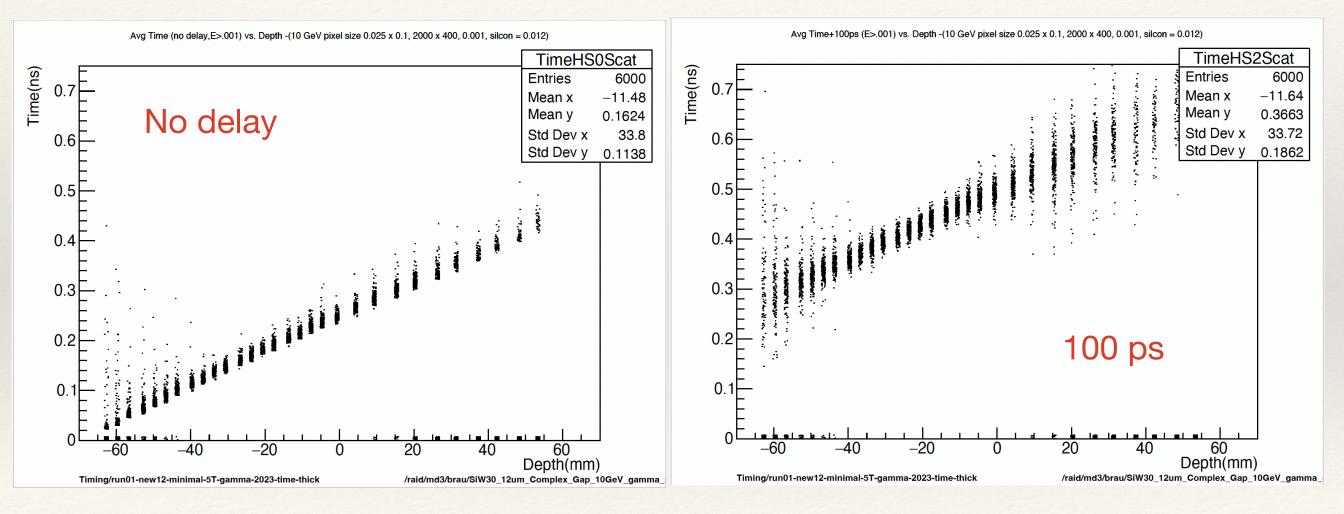
Timing by layer (no delay, $10 \text{ GeV } \gamma$)


MAPS response function my naive 100 ps model

11

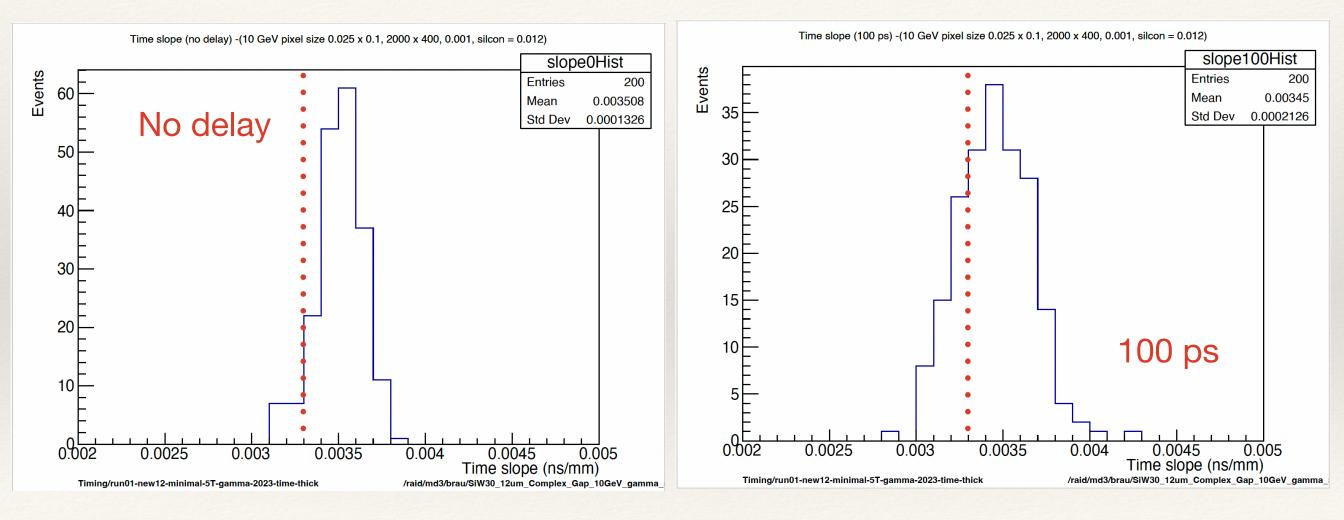
• Si D

Effect of MAPS delay (10 GeV γ)



SiD Digital ECal

12

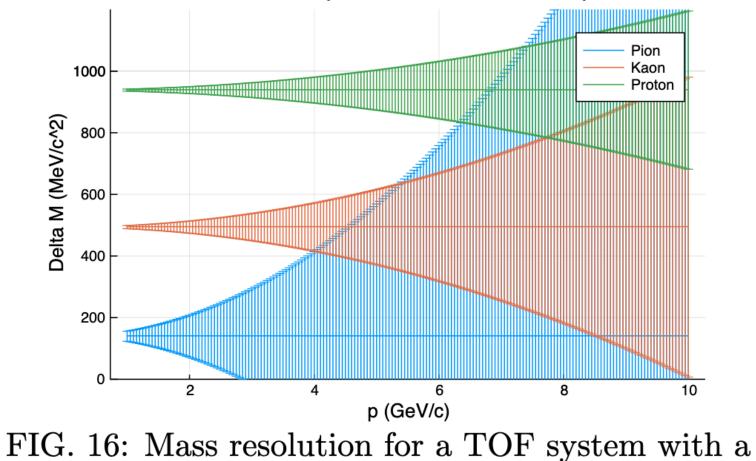

Effect of MAPS delay (10 GeV γ) average of layer hits time

SiD Digital ECal

• SiD

Slope measurement ($10 \text{ GeV } \gamma$)

Potential timing applications


- * Tag multiple events within bunch train.
- * Separate activity in ECal from nearby depositions.
- * Assist separation of energy depositions in HCal based on timing in ECal.
- * Use precise timing of tracks in ECal for PID (e.g. K identification for H s sbar).
- * Search for long-lived heavy particles.
- * Dune calorimeter?

Thanks to Andy for suggestions!

• SiD

"Updating SiD Detector concept"

Particle Separation with TOF at 10 ps

M. Breidenbach et al., "Updating the SiD Detector concept" arXiv:2110.09965 [physics.ins-det]

SiD Digital ECal

performance of 10 ps in SiD

- * Investigate specific physics channels
 - * H -> s sbar
 - Tagging long-lived heavy particles
- * Assess range of MAPS time precision
- * Other suggestions and applications?