

Update on the LLP searches with the ILD

Jan Klamka, A.F. Żarnecki University of Warsaw

jan.klamka@fuw.edu.pl

Motivation and goal

- Multiple LLP searches at the LHC
- LHC sensitive to high masses and couplings

 \rightarrow e⁺e⁻ competitive in complementary region: small masses, couplings and mass splittings

- \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- For the LLPs, ILD potentially promising with the TPC
- Few analyses for Higgs factories using full simulation

We take:

- experiment-orientated approach,
- a generic case two muons coming from a displaced vertex,
- no other assumptions about the final state, model-agnostic strategy

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

ightarrow (tuned) Inert Doublet Model sample with small mass splitting, ${
m Z}^*
ightarrow \mu \mu$

The opposite extreme case, (large boost, high-pT final state)

ightarrow (tuned) axion-like particle model sample, $a
ightarrow \mu\mu$

Simple vertex finding, based on a distance between track pairs

14 February 2024

Jan Klamka, Long-lived particle searches with the ILD detector

e⁺

e

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - → use **both track direction** (charge) **hypothesis** for vertex finding
 - \rightarrow consider opposite-charge track pairs only
 - \rightarrow select pair with **closest starting points**
- Reconstruct vertex in **between points of closest** approach of helices
 - \rightarrow Require distance < 25 mm

14 February 2024

Overlay events as a background

- ${\sim}10^{11}$ bunch-crossings (BXs) per year expected at ILC
- In each BX, 1.05 low-pT hadrons and 1 seeable e⁺e⁻ pairs events on average
- Can be busy and have similar kinematics to the signal considered
- \rightarrow many secondary vertices (mostly fake, also V0s and photon conversions)
- \rightarrow significant background
 - Consider only vertices inside TPC
 - Set of "preliminary" cuts to get rid of fakes
 - Cuts on the $\boldsymbol{p}_{_{T}}$ and geometry of track pair
 - Total expected reduction factor at the level of ~10⁻⁹ (~10⁻¹⁰) for low-pT had. (e⁺e⁻ pairs)

14 February 2024

Background from physical events

- Consider also hadronic 2-fermion events
 - → ~200 pb (~50 pb) total cross section at 250 GeV (500 GeV) and many potential sources of secondary vertices
- We have to re-run tracking (with modified d0 and z0 cuts) on REC samples, so statistics limited
- Some problems on the grid with computing elements (Andre Sailer already informed)
- For now the following results are based on
 - \rightarrow ~100k events at 250 GeV (eLpR)
 - \rightarrow ~40k events at 500 GeV (eRpL)
- Assuming that vertex finding is not affected by polarisation

First result: vertices in $\sim 1.5\%$ of qq events after the cuts for overlay reduction!

Displaced vertex sources in qq events

1) V0 particles and photon conversions

 \rightarrow veto against V0Finder output

14 February 2024

Displaced vertex sources in qq events

2) Interactions of charged particles with detector material

 \rightarrow reject vertex if there is a track pointing to the IP passing close to the vertex

14 February 2024

Displaced vertex sources in qq events

2) Interactions of **neutral** particles with detector material

→ partly irreducible (?), assuming that we want to keep generality (displaced jet signature) → for now reject "displaced jets", by requiring no tracks passing close by the vertex

14 February 2024

Further background reduction

Described background reduction methods improved the selection efficiency only by an order of magnitude

What remains:

- Not identified V0 particles and photon conversions \rightarrow further reduction discussed later
- Vertices from secondary interactions of neutral particles (with two tracks coming out)
 Side remarks:
- We can be sensitive also to other topologies (displaced jets, kinked tracks)
- Hard qq events seem to be the dominant background contribution

Further background reduction

Despite high V0Finder efficiency, not identified V0s become significant background

- loosen V0Finder selection
- cut on invariant mass of a track pair (for different particle hypotheses)

 \rightarrow reject vertices in $m_{\nu 0}$ +/- 0.05 GeV window and $m_{\mbox{\tiny e+e-}}$ <~ 0.15 GeV

Resulting efficiency: 0.09% (0.1%) for 250 GeV (500 GeV)

Further background reduction

Still remaining (potentially reducible):

- K^{0}_{L} semileptonic decays
- Tracks with worse momentum resolution (mostly photon decays)

→ alternative **tight** selection, $m_{\Lambda} + / - 0.02$ GeV window, m_{e+e-} , $m_{\pi+\pi-} < 0.7$ GeV:

Resulting efficiency: 0.01% (0.02%) for 250 GeV (500 GeV)

- Tight selection: dashed line, loose selection: solid line
- Tighter selection rejects $m_{a}=300$ MeV scenario and worsens limit for $\Delta m_{AH}=1$ GeV, but for the rest of scenarios provides significant improvement

14 February 2024

Summary

- LLPs studied for challenging parameter space regions complementary to LHC searches, two tracks from a displaced vertex analysed in a model-agnostic way
- Heavy scalars production considered, with small O(1 GeV) mass splittings between LLP and DM and low-momenta decay products
- Reconstruction of highly boosted, light ALPs, with O(1 GeV) masses, performed with the same algorithm and procedure
- We study the impact of the **2-fermion hadronic** physical events \rightarrow dominant background
- Additional selection imposed, including loose and tight sets of cuts on the track pair invariant mass
- New selection results in 95% CL limits on signal cross section at the order of 0.1-10 fb for a wide range of scenarios, with $c\tau$ between 1 mm and 100 m
- Open questions: more improvement needed? Are any other SM channels significant?

BACKUP

14 February 2024

Results (heavy scalar signal)

- Consider "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality)
- $\Delta m = 1$ GeV scenario needs dedicated approach

14 February 2024

Results (ALP signal)

- Efficiency increases with mass (decreasing boost)
- Better performance for smaller radii (as opposed to heavy scalar case)
- High efficiency for masses from $1\ \text{GeV}$

14 February 2024

Jan Klamka, Long-lived particle searches with the ILD detector

Efficiency

Cross section limits

With the overlay and qq events as the background, we can also estimate expected 95% C.L. limits on the **signal production cross section** Assume

- 2 ab^{-1} of data at 250 GeV and 4 ab^{-1} at 500 GeV ILC,
- Same selection eff. for different beam polarisations, qq total production cross sections of **198.382 pb** (**49.268 pb**) for **250 GeV** (**500 GeV**)
- 10 yr and 8.5 yr \times 10¹¹ bunch-crossings (BXs),
- 1.05 (1.00) $\gamma\gamma \rightarrow$ had. (seeable e^+e^- pairs) events per BX,
- total background rejection of 10^{-9} $(10^{-10}) \rightarrow \sim 1150$ expected N_{bg} events for 250 GeV

• No. of signal ev. corresponding to the limit: $N_{sig} = 1.64 \cdot \sqrt{N_{bg}} / \epsilon_{sel}$

Reweighting events

• For different lifetimes, $\mathbf{\tau}$ ', reweight the events by ratio of exponential PDFs:

 $w = P(t, \tau')/P(t, \tau_0)$ (with τ_0 used to generate the samples; for $\tau' = \tau_0$, w = 1)

- Limited statistics in the samples for decays at large distances problem for higher $\tau \dot{}$:
 - \rightarrow <u>cutoff</u> at a large distance (L_{max} = 3 m) above which finding a vertex is impossible
 - $\rightarrow N_{all} = \Sigma w / w_{max}$ where $w_{max} = tot.$ probability that LLP decays before L_{max}

 $\rightarrow N_{\mbox{\tiny pass}} = \varSigma w$ for events passing selection in TPC

Now with $\epsilon_{sel} = N_{pass}/N_{all}, N_{sig} = 1.64 \cdot \sqrt{N_{bg}}/\epsilon_{sel}$

- Good sensitivity, even for high lifetimes
- Limits still conservative due to the model-independent approach (not using e.g. invariant mass or missing energy)

14 February 2024

Reweighted events

Final selection – pT

- We consider $\gamma \gamma \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e⁺e⁻ sample after preselection → fit shape from γγ → had. with floating normalisations
 pT of the dilepton system

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → **reference points should be close**
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices

 d_c – distance between centres of helices projections into XY plane

(TrackStates / first hits)

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation

14 February 2024

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\% (\Delta m = 2 \text{ GeV})$
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Selection assuming correlations

For small correlations r between x and y, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$, assuming $\mathbf{30\%}$ correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

