MAPS R&D for tracking and calorimetry at future e+e- colliders

Caterina Vernieri

Christos Bakalis, James E. Brau, Martin Breidenbach, Angelo Dragone, Christopher Kenney, Alexandre Habib, Lorenzo Rota, Julie Segal, Mirella Vassilev

April 26, 2024

NATIONAL ACCELERATOR LABORATORY

Stanford University

Current benchmarks and next steps

Initial state	Physics goal	Detector	
e^+e^-	hZZ sub-%	Tracker	0
			0
		Calorimeter	4
			1
]
			5
	$hbar{b}/hcar{c}$	Tracker	0
			5

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

Requirement

 $\sigma_{p_T}/p_T = 0.2\%$ for $p_T < 100 \text{ GeV}$ $\sigma_{p_T}/p_T^2 = 2 \cdot 10^{-5} / \text{ GeV for } p_T > 100 \text{ GeV}$ 4% particle flow jet resolution EM cells 0.5×0.5 cm², HAD cells 1×1 cm² EM $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$ shower timing resolution 10 ps $\sigma_{r\phi} = 5 \oplus 15(p\sin\theta^{\frac{3}{2}})^{-1}\mu\mathrm{m}$ $5\mu m$ single hit resolution

Current benchmarks and next steps

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

Initial state	Physics goal	Detector]
e^+e^-	$h\rm ZZ~sub-\%$	Tracker	0
			0
		Calorimeter	4
			5
	$hb\overline{b}/hc\overline{c}$	Tracker	0
			5

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

- Requirements mostly driven by (Higgs) specific benchmarks
- more stringent requirements

Focus topics for the ECFA study on Higgs / Top / EW factories should provide further detector design guidelines (2401.07564) by Spring 2025

Requirement

 $\sigma_{p_T}/p_T = 0.2\%$ for $p_T < 100 \text{ GeV}$ $\sigma_{p_T}/p_T^2 = 2 \cdot 10^{-5} / \text{ GeV for } p_T > 100 \text{ GeV}$ 4% particle flow jet resolution EM cells 0.5×0.5 cm², HAD cells 1×1 cm² EM $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$ shower timing resolution 10 ps $\sigma_{r\phi} = 5 \oplus 15(p\sin\theta^{\frac{3}{2}})^{-1}\mu\mathrm{m}$ $5\mu m$ single hit resolution

Technological advances can open new opportunities and additional physics benchmarks (i.e. H→ss) can add

Monolithic Active Pixel Sensors - MAPS

A suitable technology for high precision tracker and high granularity calorimetry

- Monolithic technologies can yield to higher granularity, thinner, intelligent detectors at lower overall cost
- Significantly lower material budget: sensors and readout electronics are integrated on the same chip
 - Eliminate the need for bump bonding : thinned to less to 50μ m Ο
 - Smaller pixel size, not limited by bump bonding ($<25\mu$ m) Ο
 - Lower costs : implemented in standard commercial CMOS processes Ο technologies with small feature size (65-110 nm)
 - Either reduce power consumption or add more features Ο
- Target big sensors (up to wafer size) through use of "stitching" (step-andrepeat of reticles) to reduce further the overall material budget

Current sensor optimization in TJ180/TJ65 nm process Effort to identify US foundry on going

Snowmass White Paper <u>2203.07626</u> Common US R&D initiative for future Higgs Factories <u>2306.13567</u>

Current effort

Co-design approach: close interaction between physics studies and technology R&D [4]

- - capacitance ^[3]
 - consumption.
- ALICE ITS3 upgrade is the main driver of CERN WP1.2 efforts
 - SLAC is the only US institute involved in Engineering Runs fabrication
- - Large collaboration is interested in designing solutions for power distribution compatible with stitching and enabling O(ns) timing precision

[1] M. van Rijnbach et al., Radiation hardness and timing performance in MALTA monolithic pixel sensors in TowerJazz 180 nm, 2022 JINST C04034 [2] M. Munker et al., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance, 2019 JINST 14C05013

[3] S. Bugiel et al., Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology, NIMA Volume 1040, 1 October 2022, 167213

IDT · [4] J. E. Brau et al., The SiD Digital ECal based on Monolithic Active Pixel Sensors, https://agenda.linearcollider.org/event/9211/sessions/5248, 2021. Caterina Vernieri ·

Novel CMOS process for MAPS has recently become available, CERN (WP1.2 Collaboration) provides access to scientific community: TowerJazz-Panasonic (TPSCO) 65 nm CMOS imaging process with modified implants Builds on sensor optimization done for the TJ180 process^[1-2], excellent charge collection efficiency and low

Increased density for circuits: Higher spatial resolution, better timing performance at same power

Supports stitching: enable wafer-scale MAPS \rightarrow potential to greatly reduce costs of future experiments

Several challenges towards wafer-scale devices \rightarrow large international effort needed to address all of them

Large area MAPS – SLAC expertise

- SLAC has many years of experience in MAPS, developed detectors in several technologies^[1-4]
- MAPS developments leverage large synergy with other core mission at SLAC: X-ray detectors (BES)
- Two most recent examples:

neq/cm².

[1] W. Snoeys, J.D. Plummer, S. Parker and C. Kenney, Pin detector arrays and integrated readout circuitry on high-resistivity float-zone silicon, IEEE Trans. Electron Devices 41 (1994) 903. [2] J. D. Segal et al., Second generation monolithic full-depletion radiation sensor with integrated CMOS circuitry, in proceedings of IEEE NSS-MIC, Knoxville, U.S.A., 30 October-6 November 2010, pp. 1896–1900

[3] L. Rota et al., Design of ePixM, a fully-depleted monolithic CMOS active pixel sensor for soft X-ray experiments at LCLS-II, Journal of Instrumentation, Volume 14, December 2019 [4] C. Tamma et al., The CHESS-2 prototype in AMS 0.35 μm process: A high voltage CMOS monolithic sensor for ATLAS upgrade, doi: 10.1109/NSSMIC.2016.8069856

SLAC Caterina Vernieri · IDT · April 26, 2024

Large area MAPS – Highlights & Next Steps

Approach:

- Engaged with the scientific community to share know-how
- Focus on long-term R&D, targeting simultaneously:
 - ~ns timing resolution
 - Power consumption compatible with large area and low material budget
 - Fault-tolerant circuit strategies for wafer-scale MAPS

Highlights:

- Designed pixel architecture with binary readout optimized for linear colliders
- Submitted a small pixel matrix for fabrication on CERN WP1.2 shared run
- Architecture will allow us to evaluate technology in terms of defects and RTS

Next steps:

- Evaluate performance of 1st SLAC prototype on TJ65nm (2023).
- New design combining O(ns) timing precision and low-power (2024/2025).
- **Stretch Goals:** design of a wafer-scale ASIC (2025/2026, design only)

Engagement :

- Higgs Factory detector initiative R&D
- DRD 7.6 on common issues of power distributions compatible with stitching

Layout of SLAC prototype for WP1.2 2022 shared submission on TowerSemi 65nm

Tracking performance

O(ns) timing capabilities as an additional handle to suppress beam induced backgrounds

Time distribution of hits per unit time and area: $\sim 4.4 \cdot 10^{-3}$ hits/(ns·mm²) $\simeq 0.03$ hits/mm² /BX in the 1st layer of the vertex barrel SiD-like detector for ILC/C³

D. Ntounis talk on beam background simulations at ECFA 2023

SLAC Caterina Vernieri · IDT · April 26, 2024

Parameter	Value
Time resolution	1 ns-rms
Spatial Resolution	7 µm
Expected charge from a MIP	500 – 800 e/h
Minimum Threshold	200 e-
Noise	< 30 e-rms
Power density	< 20 mW/cm ²
Maximum particle rate	1000 hits/cm ²

7

Beam Format and Detector Design Requirements FCC Mid Term Report

- Very low duty cycle at LC (0.5% ILC, 0.03% C³) allows for trigger-less readout and power pulsing
 - Factor of 100 power saving for front-end analog power
 - \cdot O(1-100) ns bunch identification capabilities
- Impact of beam-induced background to be mitigated through MDI and detector design •
 - Timing resolution of O(ns) can further suppress beam-backgrounds and keep occupancy low •

 - Tracking detectors need to achieve good resolution while mitigating power consumption

ILC Trains at 5Hz, 1 train 1312 bunches Bunches are 369 ns apart

C³ Trains at 120Hz, 1 train 133 bunches Bunches are 5 ns apart

FCC@ZH Bunches 1 µs apart FCC@Z Bunches 20 ns apart

• O(1-10) ns for beam background rejection and/or trigger decision before reading out the detector

MAPS for ECal

Fine granularity allows for identification of two showers down to the mm scale of separation

- SiD detector configuration with $25 \times 100 \ \mu m^2$ pixel in the calorimeter at ILC
 - With no degradation of the energy resolution
- The design of the digital MAPS applied to the ECal exceeds the physics performance as specified in the ILC TDR
- The 5T magnetic field degrades the resolution by a few per cent due to the impact on the lower energy electrons and positrons in a shower
- Future planned studies include the reconstruction of showers and π^0 within jets, and their impact on jet energy resolution

GEANT4 simulations of Transverse distribution of two 10 GeV showers separated by one cm

Target Specs vs. State of the Art

Chip name	Technology	Pixel pitch [µm]	Pixel s
Target Specification	?	25 x 100	Sq /
ALPIDE [2][3]	Tower 180 nm	28	Squ
FastPix ^{[4][5]}	Tower 180 nm	10 - 20	Hexa
DPTS ^[6]	Tower 65 nm	15	Squ
Cactus ^[7]	LF 150 nm	1000	Squ
MiniCactus ^[8]	LF 150 nm	1000	Squ
Monolith ^{[9][10]}	IHP SiGe 130 nm	100	Hexa

We decided to go with the Tower 65nm technology, which has been optimized by CERN WP1.2 to have low sensor capacitance allowing very good performance with low power consumption. + it has the possibility of a wafer-scale stitched sensor + it has been proven to be radiation tolerant

Target Specs vs. State of the Art

capacitance allowing very good performance with low power consumption. + it has the possibility of a wafer-scale stitched sensor + it has been proven to be radiation tolerant

- We decided to go with the Tower 65nm technology, which has been optimized by CERN WP1.2 to have low sensor

NAPA_p1: NAnosecond Pixel for large Area sensors – Prototype 1

First prototype in TJ 65nm

- The prototype design submitted with a total area 5 mm x 5 mm and a pixel of 25 μ m x 25 μ m, to serve as a baseline for sensor and pixel performance.
- Design motivation \rightarrow simple architecture with minimum global • signals to reduce failure risk in a large area implementation.
- Thanks to CERN WP1.2 effort on sensor optimization in TowerSemi 180 nm and 65 nm technologies

Picture of NAPA-p1 prototype from WP1.2 shared submission

JINST 19 (2024) 04, C04033

11

Summary of NAPA-p1 Performance

	Specification	Simulated NA
Time resolution	1 ns-rms	0.4 ns-rms
Spatial Resolution	7 µm	7 µm
Noise	< 30 e-rms	13 e-rms
Minimum Threshold	200 e-	~ 80 e-
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle

Acknowledgement: to CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a MLR led by CERN

Test Setup for NAPA-p1

Chips were received in September 2023

- A custom carrier was designed at SLAC for the NAPA-p1 chip providing all analog references
- The chip was wire-bonded at SLAC
- The carrier boards connects to a digital board containing an FPGA and several DAC's

Carrie Board

Napa-p1

Preliminary Characterization Results

Chip characterization is on going

14

Preliminary Characterization Results

Chip characterization is on going: Preliminary results match simulation

DC leakage current variant has less nosie

Conclusions and next steps

- First MAPS prototype within CERN WP1.2 collaboration targeting e+e- requirements is being tested MAPS technology is being investigated for applications at future e+e⁻ colliders for both tracking and calorimetry applications
- Developed first prototype within CERN WP1.2 based on TJ 65nm processing Simulations of NAPA-p1 show that it is possible to achieve a time resolution 1 ns-
- rms with reasonably low power consumption of ~100 mW/cm² x Duty Cycle
 - First characterization of Napa-p1 is promising more ongoing
 - Design of NAPA-p2 has started to tackle large sensor challenges
 - NAPA-p2 will serve as a system proof of concept
- Requirements derived for LC but many of the challenges of deploying this technology are common: power distribution, low yield ...
 - Technical problems which are independent of the application which require international collaboration to tackle
 - Engagement within the DRD7.6 collaboration to develop specific block to be included in the next engineering run.

NAPA-p1

Enabling technical capabilities at SLAC

Microwave Annealing & Device modeling and simulations

AXOM Microwave Annealing System in SLAC cleanroom

- impurities

Optimization of material to obtain desired properties (semiconductors, ceramics, polymers) often requires annealing (heat) • Heat may change, damage or destroy other elements of a structure • Heating materials is energy intensive process

Microwave annealing (MWA) is a non-equilibrium annealing technique which selectively transfers energy to defects, dopants, interfaces or

Tool facilitates development of novel device structures for sensors, ASICs SLAC has developed several HEP applications using microwave annealing MWA is compatible with CMOS processing, allowing advanced integration

Experience in Device modeling and simulations TCAD full characterization of new processes

MAPS on novel CMOS technologies

Blue-sky R&D on CMOS 22nm FDSOI

- Fully-Depleted Silicon-On-Insulator process enables implementation of sensor in substrate
- Promising CMOS process with excellent mixed-signal performance
- TCAD simulations and initial pixel design to evaluate key performance parameters:
 - Detector capacitance
 - Charge collection time
 - Cross-talk

3D Charge collection simulations (MIP)

SLAC Caterina Vernieri · IDT · April 26, 2024

Read-out current: compare three process options

Recent results with Digital Pixel Test Structures

Synergies with DPTS characterization at CERN test beam facility within ALICE Collaboration

Characterization done up to 10¹⁵ 1 MeV n_{eq} cm⁻²

Digital pixel test structures implemented in a 65 nm CMOS process <u>A Compact Front-End Circuit for a Monolithic Sensor in a 65-nm CMOS Imaging Technology</u>

Current status of beam-background studies

Similar tools and methodology between ILC & FCC within Key4HEP

- - assuming 10μ s integration time

 $occupancy = hits/mm^2/BX \cdot size_{sensor} \cdot size_{cluster} \cdot safety$

 $25\mu m \times 25\mu m$ (pixel) $size_{cluster} = \frac{5 \ (pixel)}{2.5 \ (strip)}$ $1mm \times 0.05mm$ (strip)

D. Ntounis (2023) <u>G. Marchiori (2023)</u> TDAQ@Annecy2024

• ILC physics studies are based on full simulation data and some have been recently repeated for C³ • Time distribution of hits per unit time and area on 1st layer $\sim 4.4 \cdot 10^{-3}$ hits/(ns \cdot mm²) $\simeq 0.03$ hits/mm² /BX • CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole

Design Approach

For a constant SNR and Q_{in} \rightarrow *Power* $\propto (C_{sensor})^m$ *with* $2 \leq m \leq 4$ as shown in [11]

Aim for smallest possible sensor capacitance \rightarrow

- - \rightarrow C_{sensor} of 2-3 fF is achievable while maintaining high collection efficiency

Jitter
$$\propto \frac{Cload}{\sqrt[n]{I}}$$
 with $1 \le n \le 2 \rightarrow$ Keep C_{load} to a minim

Thanks to CERN WP1.2 effort on sensor optimization in TowerSemi 180 nm and 65 nm technologies ^{[12] [13]}

Going Towards a Large Sensor \rightarrow

 $\Delta V = I_{pix} \times R_{Pix} + 2 \times I_{Pix} \times R_{Pix} + 3I_{Pix} \times R_{Pix} + \dots + N \times I_{Pix} \times R_{Pix}$ $\Delta V = I_{Pix} \times R_{Pix} (1 + 2 + 3 + \dots + N)$ $\Delta V = I_{Pix} \times R_{Pix} \times \frac{N(N+1)}{2}$

Assuming : I_{pix} = 600 nA and R_{pix} = 300 m Ω

Assuming pixel of 25 $_{\mu}$ m x 25 $_{\mu}$ m

A column of 10 cm would have 4000 pixels

Double sided powering

 \rightarrow max drop length = 2000 pixels

VDD-GND goes from 1.2 V near the power pads

down to around 480 mV after 2000 pixels

The main limitation comes from large scale power distribution rather than cooling constraints

After 10³ pixels (reticle, 2.5 cm), $V_{drop} \approx 0.1 V$ After 4 x 10³ pixels (sensor, 10cm), $V_{drop} = 1.5V$!

Simulation of Jitter and ENC as a Function of C_{sensor}

These simulations are with a nominal pixel current of 600 nA \rightarrow <Power density> = 115 mW/cm² x duty cycle For e+e- machines such as ILC and C³, duty cycle is expected < 1%

Simulation Results : Jitter and Time Walk

Jitter

Caterina Vernieri · IDT · April 26, 2024 SLAC

Not negligible and must be corrected (in pixel? In balcony? Offline? TBD)

Sensors technology overview

Several possible choices for the VTX detector:

- Monolithic Active Pixels (MAPS)
 - CMOS Pixel Sensors (CPS)
 - Fully Depleted on High Resistivity Substrate (DNwel sensing)
 - Fully Depleted SOI technologies •
- Depleted Field Effect Transistors (DEPFET)
- Fine pixel Charged Coupled Devices (CCD)
- 3D integration
- The general landscape is also changing rapidly with advances in microelectronics

CMOS (CPS)

DEPFET

Caterina Vernieri

EFCA - October 2023

Fine pixel CCD

ALPIDE

- With the current tracker upgrade ALICE redefined the new state-of-the art in CMOS MAPS technology and its applications in HEP
- ALice Plxel DEtector (ALPIDE) uses CMOS Pixel sensor used in imaging process
 - full CMOS circuitry within active area
 - Sensor thickness = $20-40 \ \mu m \ (0.02-0.04\% \ X0)$
 - 5µm spatial resolution
 - radiation hard to 10^{13} 1 MeV n_{eq}

The used technology offers further opportunities: smaller feature size, **bending** that directly impact the key measurements that highly rely on precise vertexing and low material budget

EFCA - October 2023

ALICE: Bent MAPS for Run 4

Recent ultra-thin wafer-scale silicon technologies allow: Sensor thickness = 20-40 µm - 0.02-0.04% X0 Sensors arranged with a perfectly cylindrical shape a sensors thinned to ~30µm can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) Industrial stitching & curved CPS along goals of ALICE-ITS3, possibly with 65 nm process

Caterina Vernieri

EFCA - October 2023

Bending Si wafers + circuits is possible

Particle Flow Calorimeters

CALICE collaboration: development and study of finely segmented and imaging calorimeters

- Precise reconstruction of each particle within the jet
- •
- CALICE R&D inspired CMS high granularity solution HGCAL Common test beams with the AHCAL prototype

Issues: overlap between showers, complicated topology, separate physics event particles from beam-induced background • New ideas/technologies being explored: high precision (ps) timing calorimeters and new sensors ideas (ex: MAPS, LGADs)

SiD

- Compact, cost constrained detector
 - 5 T solenoid B-field with with R_{ECAL} =1.27 m
 - All silicon pixel vertex + tracking system •
 - Highly granular Si calorimeter optimized for PFLOW •
- Pixel Vertex detector
 - 1 kGy and 10¹¹ n_{eq} /cm² per year
 - **Pixel hit resolution** better then 5 μ m in barrel
 - Better if charge sharing is used
 - Less than **0.3% X₀** per pixel layer ٠
 - air cooling \rightarrow low-mass sensor
 - Single bunch time resolution •
 - Low capacitance and high S/N allows for acceptable power dissipation for single-crossing time resolution (~ 300-700 ns)
- Outer pixel Tracker:
 - 0.1-0.15% X₀ in the central region

Caterina Vernieri

EFCA - October 2023

