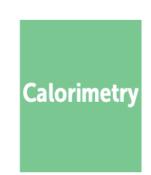
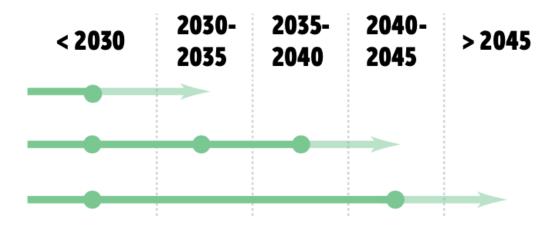
DRD-on-Calorimetry Status and Scientific Programme

Roman Pöschl

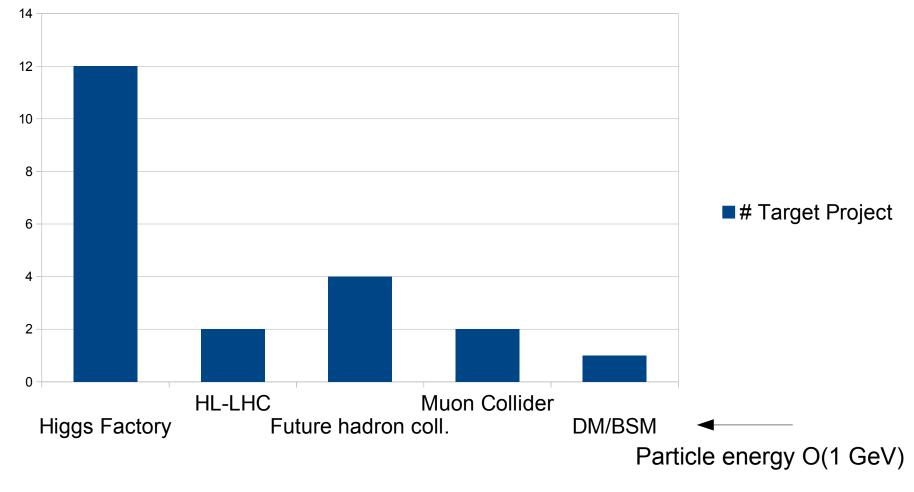

On behalf of DRD-on-Calorimetry

Material partially by Gabriella Gaudio and/or shown at recent collaboration meeting


ILD Monthly Meeting April 2024

Future Facilities and DRDT for Calorimetry

- **DRDT 6.1** Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
- **DRDT 6.2** Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
- **DRDT 6.3** Develop calorimeters for extreme radiation, rate and pile-up environments


- The Detector R&D Themes and the provisional time scale of facilities set high-level boundary conditions
 - See backup slides for detailed R&D tasks

Towards DRD Calorimetry – Community building and proposabro Calo

- 1st Community Meeting 12/1/23
 - https://indico.cern.ch/event/1212696/
- Proposal phase until 15th of November 2023
 - Input proposals collected until 1st of April 2023
 - 2nd Community Meeting 20th April 2023
 - https://indico.cern.ch/event/1246381/
 - Input proposals have been condensed into a DRD-on-Calorimetry proposal
 - First version submitted to DRDC on July 28th
 - Final version submitted to DRDC on November 15th
- DRD-on-Calorimetry approved by CERN Research Board on December 6th to start on January 1st 2024

DRD Calo - Input proposals and target projects

- Higgs factories dominate
 - HF includes heavy flavour (factory) that targets superb elm. energy resolutions
- (Already now) orientation towards future hadron collider and muon collider

The DRD Calo Proposal

DRD 6: Calorimetry

Proposal Team for DRD-on-Calorime

January 6, 2024

Roberto Ferrari⁴, Gabriella Gaudio⁴, Alberto Gola⁵, Adrian Irlee⁶, Imad Laktineh⁷,
Marco Lucchini⁸, Nicolas Morange⁸, Wataru Ootani¹⁰, Marc-André Pleieri¹³, Roman Poschl⁹
Philipp Roloff¹, Felix Sefkow¹², Frank Simon¹³ Tommaso Tabarelli de Fatis⁸, Christophe de l
Taille¹⁴, Hwidong Yoo¹⁵ (Editors)

¹CERN, Gensea, SWITZERLAND
²University of Oregon, Eugene, OR USA
⁴University of Maryland, Cokege Park, MD USA
⁴PRFN, Pavia, ITALY
⁴PBK, Poso, ITALY
⁴PBK, Poso, ITALY
⁴PER, CSIC-University of Valencia, Valencia, SPAIN
⁶PEL Loyn, Vileurbanne, FRANCE
⁸University and INFN Milano-Bicocca, Milano, ITALY
⁹PICLIAs, Université Para-Sauly, Orsay PRANCE
⁸University of Tokyo, JAPAN
⁸University of Tokyo, JAPAN
¹⁸Brookhawan National Laboratory, Ugon, NY USA
¹²Deutsches Elektrone-Synchrotron DESY, GERMANY
¹⁴OMEGA, Palaseau, PRANCE
¹⁵Yonset University, Seoul, SOUTH-KOREA

Contents

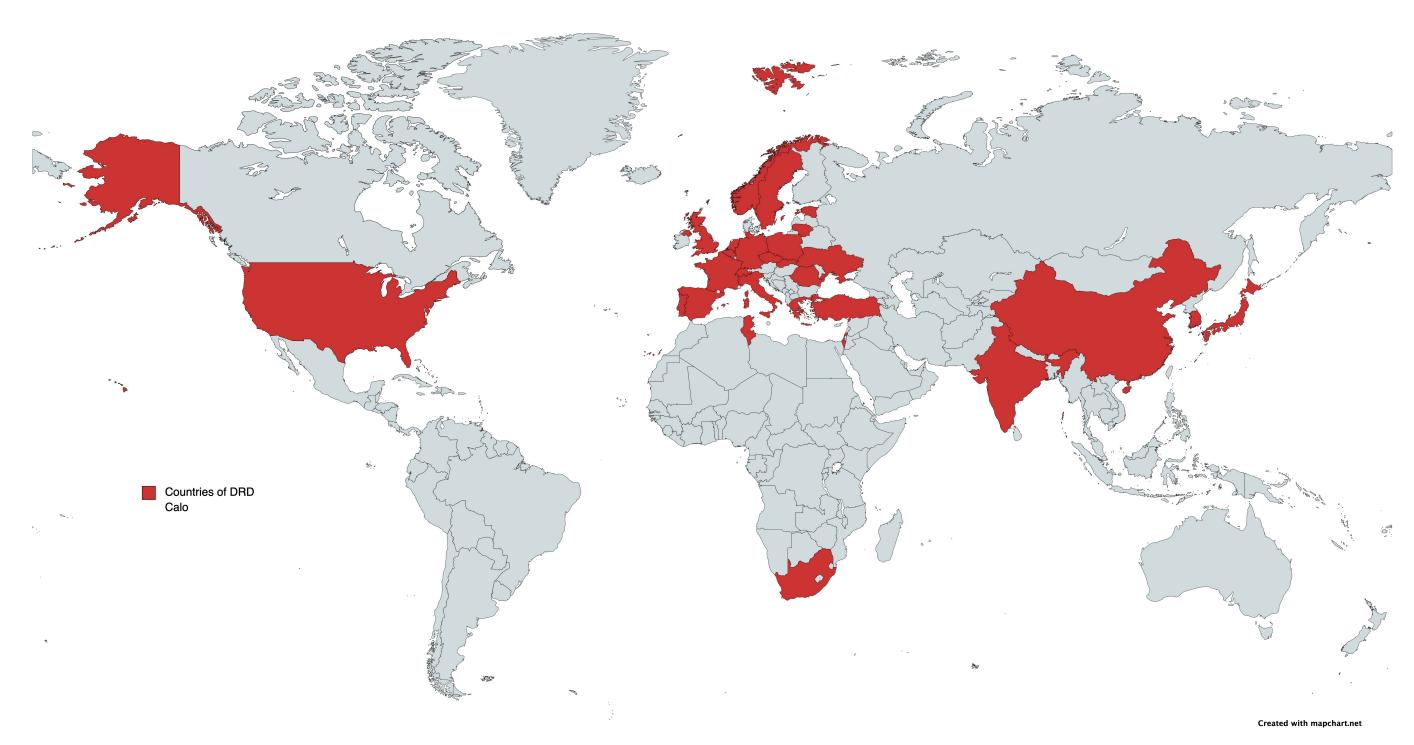
In	troduction
Or	ganisation of the DRD-on-Calorimetry
2.1	Scientific organisation
2.2	Governance
1	2.2.1 Executive bodies
7	
W	ork Package 1: Sandwich calorimeters with fully embedded electronics
3.1	
3.2	
	3.2.1 Task 1.1: Highly pixelised electromagnetic section
	3.2.2 Task 1.2: Hadronic section with optical tiles
-	3.2.3 Task 1.3: Hadronic section with gaseous readout
3.3	Short-term applications
W	ork Package 2: Liquified Noble Gas Calorimeters
4.1	Description
4.2	Objectives
W	ork Package 3: Optical calorimeters
5.1	Description
5.2	Activities and objectives
	5.2.1 Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters
	5.2.2 Task 3.2: Innovative sampling EM calorimeters

		5.2.3 Task 3.3: Hadronic sampling calorimeters 5.2.4 Task 3.4: Materials 5.3 Milestones and deliverables 5.4 Short-term applications	. 19
,	6	Work Package 4: Electronics and readout	21
		6.1 Description	. 21
		6.2 Objectives	. 21
,	7	Resources	22
	8	Working Groups	22
į		8.1 Photodetectors	. 22
		8.2 Testbeam plans, facilities and infrastructure	
,		8.2.1 Thoughts on facilities and infrastructures	. 25
٠		8.3 Detector physics, simulations, algorithms and software tools	
,		8.3.1 Data models and data management	. 26
,		8.3.2 DAQ software	. 27
		8.3.3 Simulation	. 27
		8.3.4 Particle flow algorithms	. 27
ķ		8.3.5 Machine learning approach	
		8.4 Industrial connection and technological transfer	. 27
		8.5 Mechanics and Integration	. 28
,	9	Interconnections with other DRDs	28
,	10	Conclusion	28

- 34 pages
 - Based on worldwide community input
- Short description of goals, projects and organisation
 - Research program (and resources) focuses on 2024 2026
 - ... and outlooks beyond
 - Introduction of
 - Proposal of initial Governance structure (see below)
 - Work Packages and Working Groups (see below)

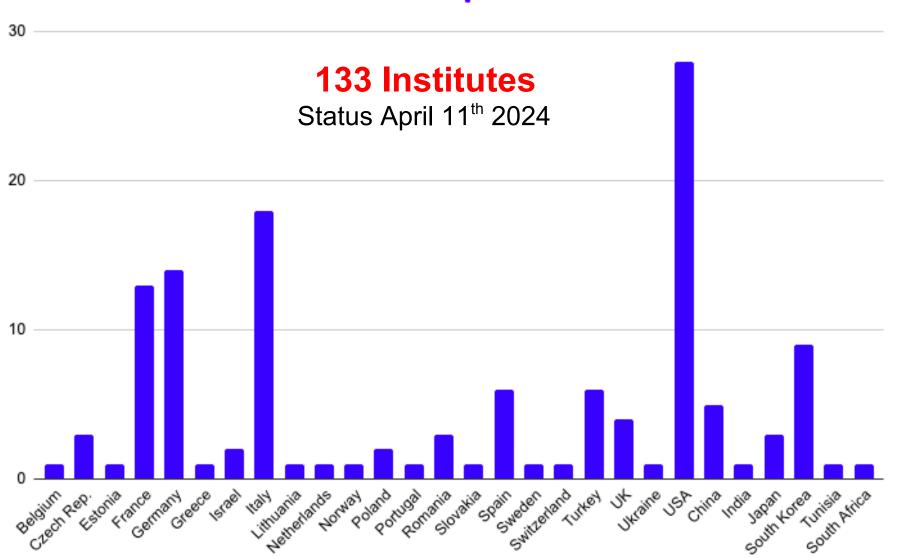
CERN-DRDC-2024-004; DRDC-P-DRD6: http://cds.cern.ch/record/2886494

Ramp up of activities – Rough View



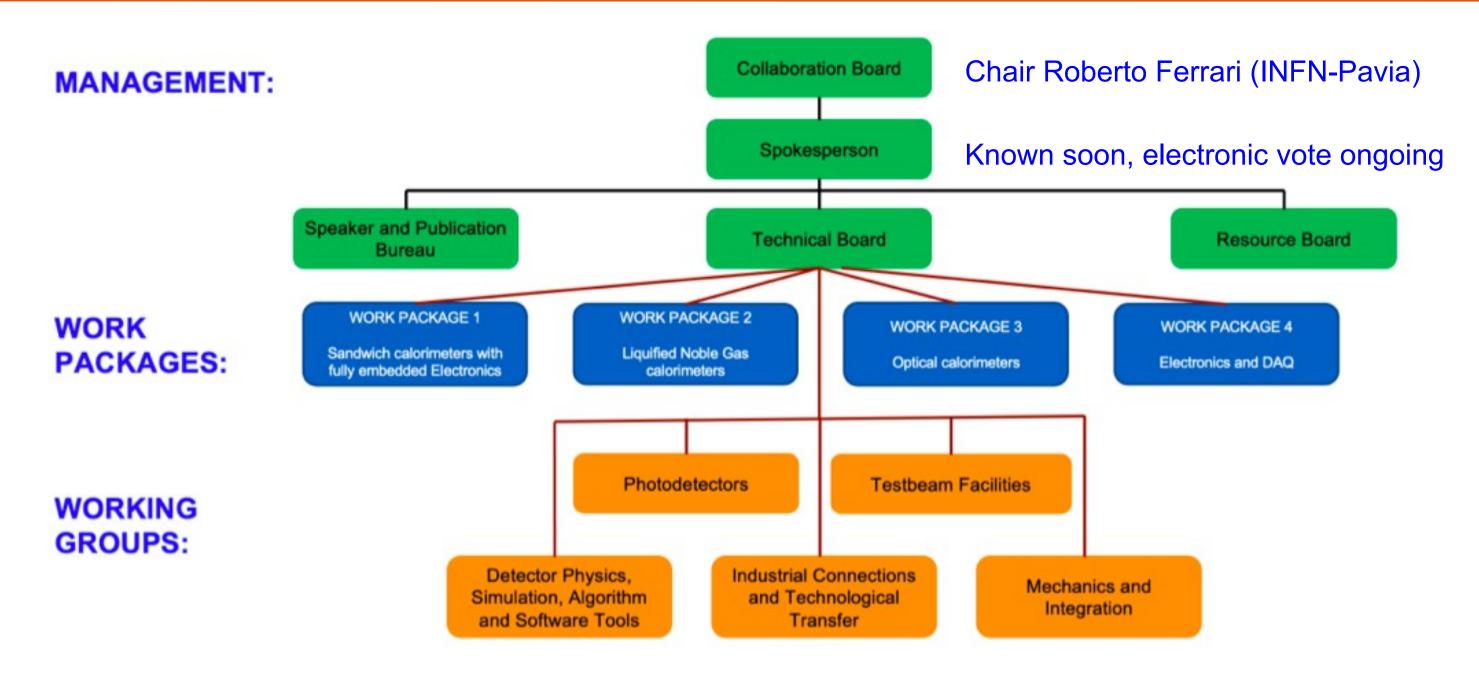
2024 2027 2030

- Little (extra) need at the beginning (2024-2026)
 - Start with prototypes that are either existing or currently under construction
 - (Mainly) benefitting from existing funding at national or international level (i.e. AIDAinnova, EUROLABS in Europe or CalVision, RADICAL in the US [plus maybe others], US-Japan Program, R&D programs in China)
 - Specification studies, concept proof would require fresh funding
- Relatively high density of beam tests with new (large scale) prototypes after 2026
 - Several large-scale prototypes demonstrate ambition of R&D programme
- Execution of program requires <u>availability and support</u> of beam test facilities


DRD Calo – Where are we?

DRD Calo – Who are we?

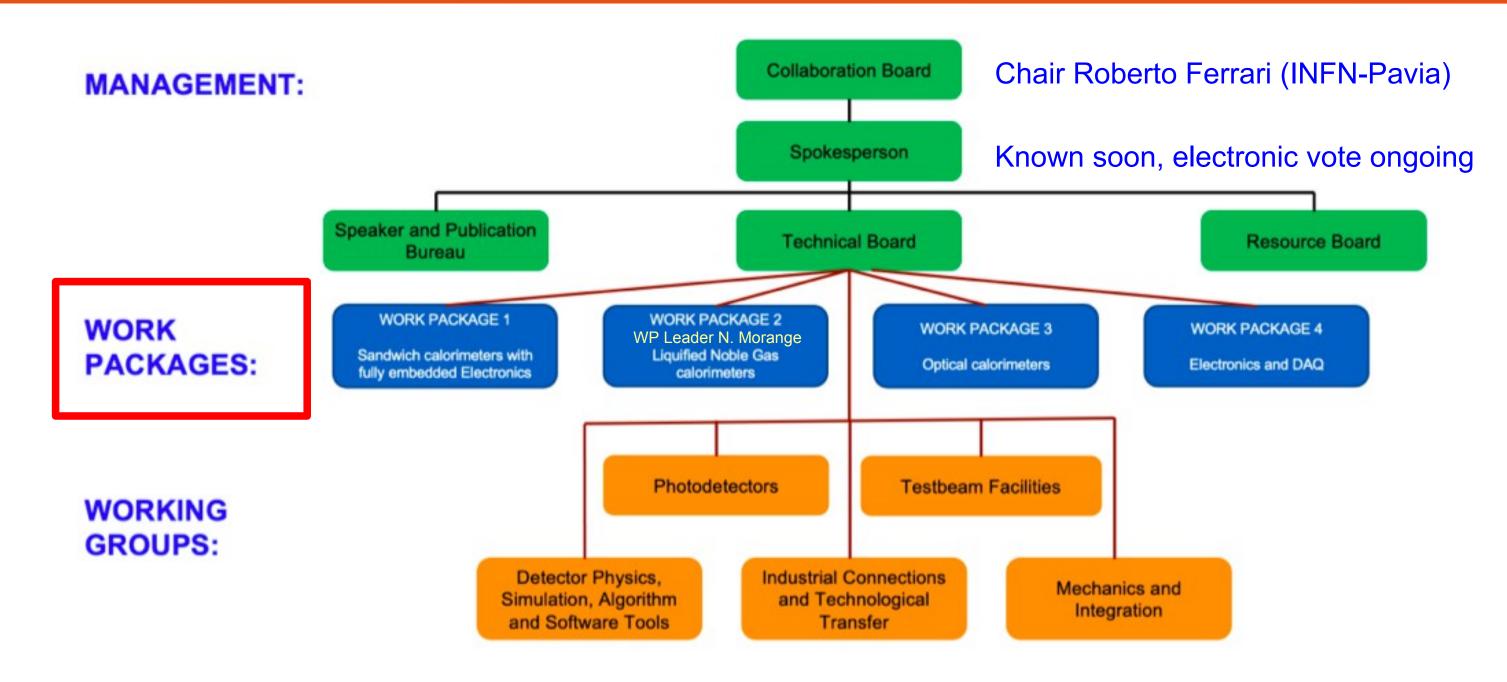
Institutes per Countries



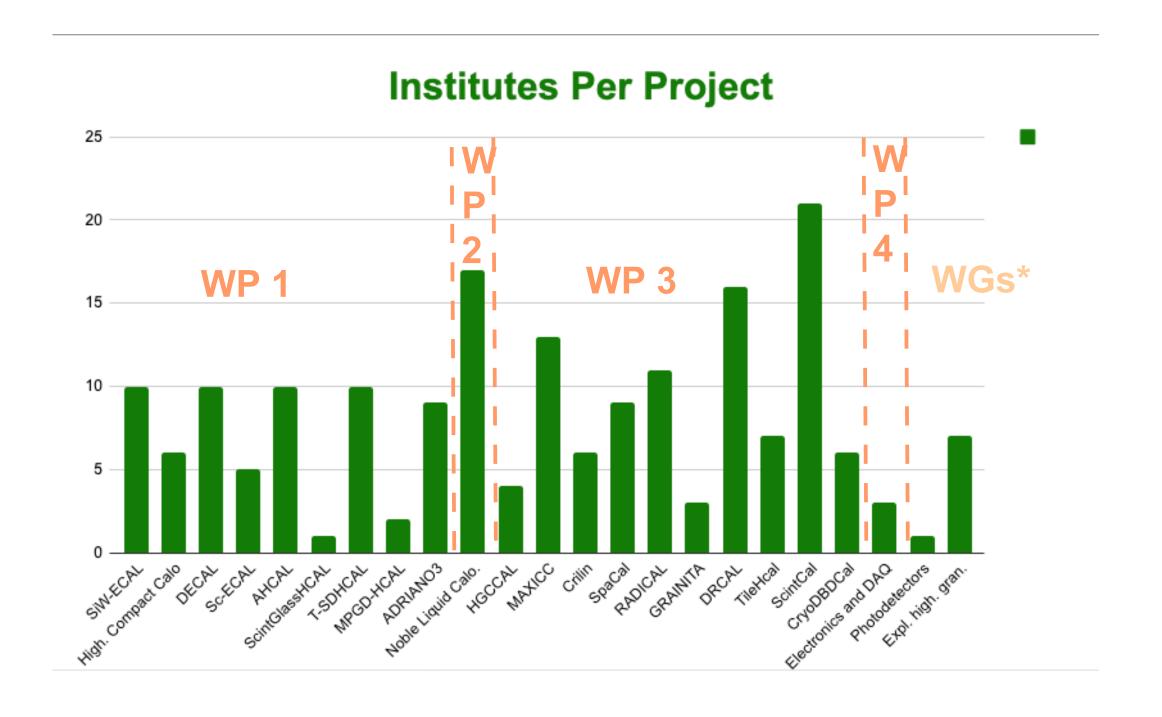
- Counted are groups that have expressed an interest to join the DRD Calo via the input proposals or in communication afterwards
- Now starting to scrutinise membership

DRD Calo – Basic structure

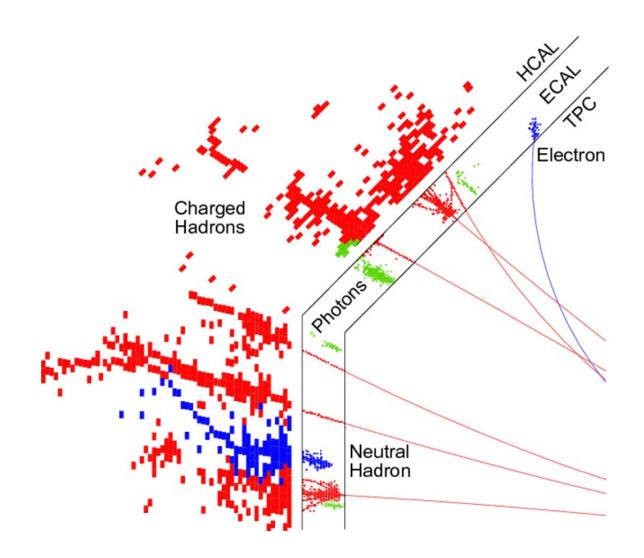
1st Collaboration Meeting - 9th - 11th of April at CERN



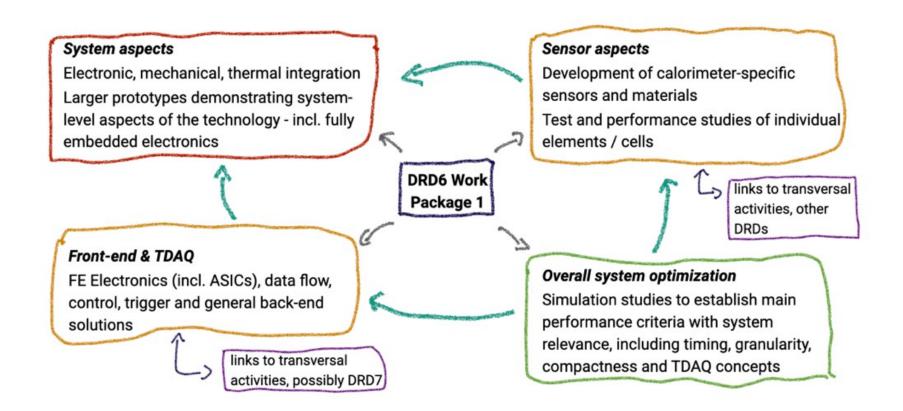
- "Real" Kick-off of the DRD-on-Calorimetry
- 133 participants, 67 on-site ILD Meeting April 2024



DRD Calo – Basic structure



DRD Calo – Institutes and Work Packages (Working Groups) DRD Calo



Work Package 1 in a nutshell

- Imaging calorimeters live on the high separation power for Particle Flow
- One calorimeter Subdivided into electromagnetic and hadronic sections

• Challenges:

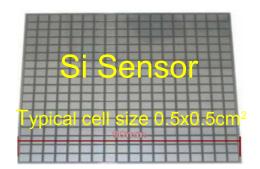
- High pixelisation, 4π hermetic -> little room for services
 - Detector integration plays a crucial role

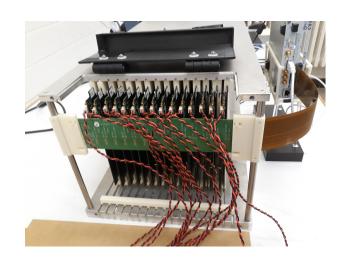
New strategic R&D issues

- Detector module integration
- Timing
- High rate e+e- collider (such as FCC-ee)

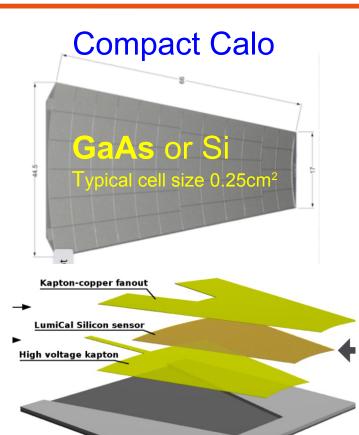
Work Package 1 - Tasks

Elm. sections

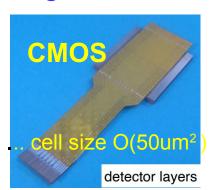

Hadronic sections

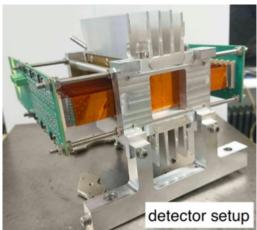

Task/Subtask	Sensitive Material/ Absorber	DRDT
Task 1.1: Highly pixelised electromagnetic section		
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/Tungsten	6.2
Subtask 1.1.3: DECAL	CMOS MAPS/Tungsten	6.2, 6.3
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/Tungsten	6.2
Task 1.2: Hadronic section with optical tiles		
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/Steel	6.2
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/Steel	6.2
Task 1.3: Hadronic section with gaseous readout		
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/Steel	6.2
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/Steel	6.2, 6.3
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers+Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3

Task 1.1: Highly pixelised electromagnetic section


Silicon W(olfram) ECAL

Main R&D Topics


- High level integration
- Power pulsing <-> continuous operation
- Reduction of power consumption;
- Cooling?
- Timing, if and how
- Real-size layers



Main R&D Topics

- Testing of sensors with readout strips
- High level integration
- Study of conductive glue
- Wireless data transfer

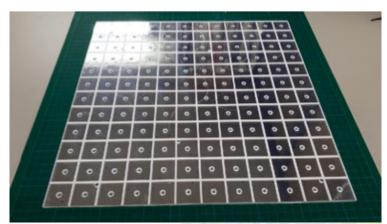
Digital ECAL

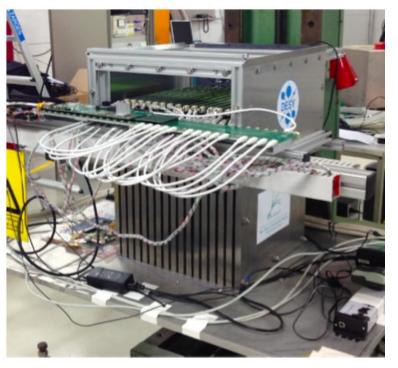
Main R&D Topics

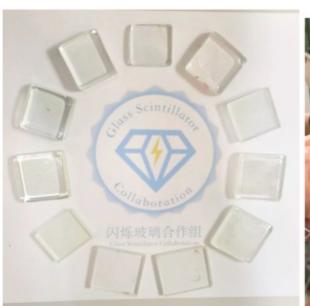
- CMOS MAPS-based optimised for calorimetry
- Reduction of the power consumption to 1mW/cm²
- Stitching technologies for large surfaces

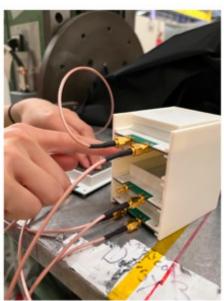
Scintillator ECAL

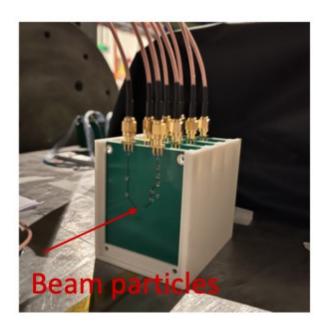
Main R&D Topics


- Power pulsing <-> continuous operations
- Reduction of power consumption
- Cooling?
- Timing, if and how
- Real-size layers


Task 1.2: Hadronic Section with Optical Tiles


Analogue HCAL

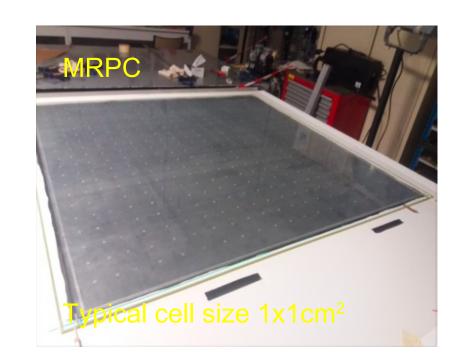

ScintGlass HCAL



Glass scintillatiing Tile

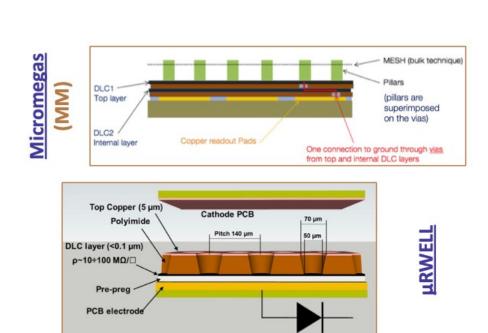
Main R&D Topics

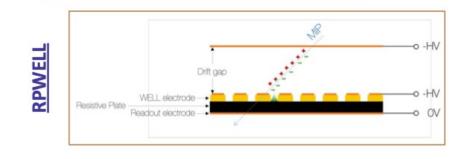
- Continuous readout,
- Data rates and possible trigger requirements of circular Higgs Factories
- Development of appropriate electrical, thermal and mechanical integration concepts


Main R&D Topics

- Identification of optimised scintillating glass materials
- Selection of photodetectors and readout ASICs in synergy with other projects in the DRD
- Small electromagnetic prototypes -> full-scale hadronic prototype

Task 1.3: Hadronic Section with Gaseous Readout

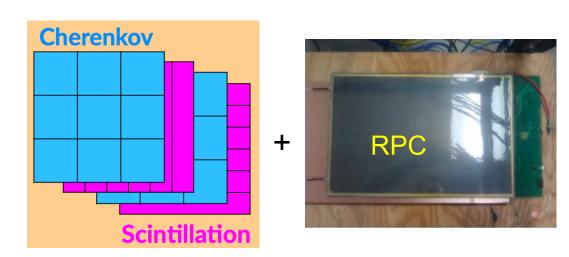

Time-Semi-Digital HCAL



Main R&D Topics

- Development of multigap RPC (MRPC) to improve timing (and rate capability)
- Readout ASIC, e.g. Liroc
- Development of a few layers of 1x1 m² for insertion into SDHCAL prototype

Micro-Pattern Gas Detector HCAL



Main R&D Topics

- Simulation studies for a future muon collider
- Development of large-area MPGD chambers including adequate readout electronics ILD Meeting – April 2024

ADRIANO3 Triple r/o calorimeter

Main R&D Topics

- Optimisation of light yield, RPC optimisation, timing resolution and cost
- Prototype layers -> medium-scale prototype

Work Package 1 – Milestones and Deliverables

MS and D: Overview Table

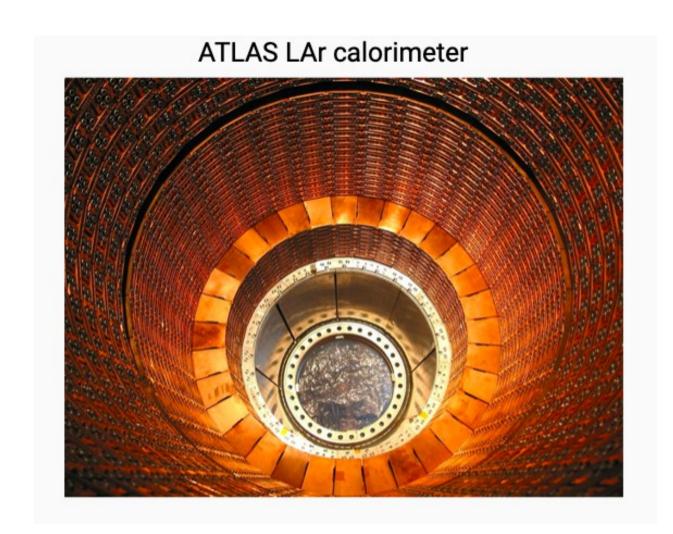
Milestone	Deliverable	Description	Due date
tromagnet	ic section		
M1.1	D1.1	Revised 15 layer stack Specifications for timing and cooling	2024 2025
	D1.2	Engineering module for Higgs factory	>2026
	D1.3	Updated set of compact detection layers	2024
M1.2		readout	2026
	D1.4	Set of validated GaAs sensors	>2026
M1.3		Requirements for DECAL-specific sensor	2024
M1.4		Full evaluation of (ALPIDE-based) EPICAL-2 performance	2025
M1.5		DECAL-specific optimisation (with	2026
	D1.5	machine-specific options) New sensors producted and evaluated in EPICAL-3 prototype	>2026
M1.6		Improved components (engineering for	2024
	D1.6	40-layer prototype and testbeam	2025
th optical t	iles		
M1.7 M1.8	D1.7 D1.8 D1.9	Concept for continuous readout First layer with continuous readout EM prototype demonstrating system aspects Full-size layer and multi-layer demonstrator Engineering prototype	2024 2025 2026 >2026 >2026 >2026
M1.9	D1.10 D1.11	cm-scale tiles 15-layer EM module 40-layer prototype	2024 2025 >2026
th gaseous	readout		
M1.10		Study of the impact of timing on PFA	2024
M1.11		Specifications for first layers	2025
M1.12	D1.12	First T-SDHCAL layers 40-layer prototype	2026 >2026
	D1.13	Completion of 6-layer $20 \times 20 \text{ cm}^2$ prototype	2024
M1.13			2025
M1.14	D1 14	10-layers prototype (6L: $20 \times 20 \text{ cm}^2$	2026 2026
	D1.14 D1.15	$+4L: 50 \times 50 \text{ cm}^2$) 3 $100 \times 100 \text{ cm}^2$ layers	>2026
M1.15		Small-scale test layers	2024
	M1.1 M1.2 M1.3 M1.4 M1.5 M1.6 h optical t M1.7 M1.8 M1.9 ch gaseous : M1.10 M1.11 M1.12	M1.1 D1.2 D1.3 M1.2 D1.4 M1.5 D1.5 M1.6 D1.6 Ch optical tiles M1.7 M1.8 D1.7 D1.8 D1.9 M1.9 D1.10 D1.11 Ch gaseous readout M1.10 M1.11 M1.12 D1.12 D1.13 M1.13 M1.13	M1.1 D1.1 Revised 15 layer stack Specifications for timing and cooling Engineering module for Higgs factory D1.2 Updated set of compact detection layers Prototype for GaAs sensors with strip readout Set of validated GaAs sensors M1.3 Requirements for DECAL-specific sensor design established M1.4 Full evaluation of (ALPIDE-based) EPICAL-2 performance Design for next-generation sensor with DECAL-specific optimisation (with machine-specific options) New sensors producted and evaluated in EPICAL-3 prototype M1.6 Improved components (engineering for production, timing, active cooling, etc.) 40-layer prototype and testbeam Ch optical tiles M1.7 Concept for continuous readout First layer with continuous readout EM prototype demonstrating system aspects Full-size layer and multi-layer demonstrator Engineering prototype M1.9 D1.10 Interval and multi-layer demonstrator Engineering prototype M1.10 Study of the impact of timing on PFA performance M1.11 Specifications for first layers First T-SDHCAL layers M1.12 First T-SDHCAL layers D1.13 Completion of 6-layer 20 × 20 cm ² prototype M1.14 Design of 50 × 100 cm ² layers Unlayers prototype (AL) and Completion of 6-layer 20 × 20 cm ² prototype D1.14 Design of 50 × 100 cm ² layers Unlayers prototype (AL) and Completion of 6-layer 20 × 20 cm ² D1.14 Design of 50 × 100 cm ² layers Unlayers prototype (AL) and Completion of 6-layer 20 × 20 cm ² D1.14 Design of 50 × 100 cm ² layers Unlayers prototype (AL) and Completion of 6-layer 20 × 20 cm ² D1.15 D1.16 D1.16 D1.17 D1.17 D1.18 D1.19 D1

7 Milestones and 1 deliverable in 2024

Milestones

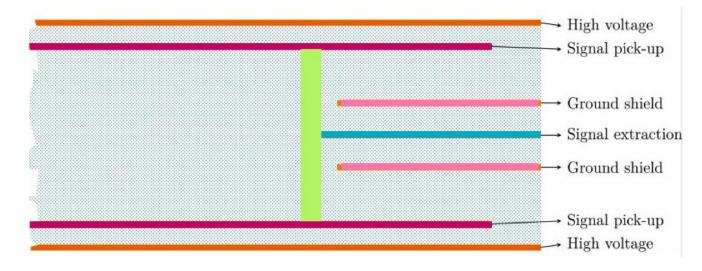
- Task 1.1
 - Requirements for DECAL-specific sensor design established
 - Sc-Ecal: Improved components (engineering for production, timing active cooling)
- Task 1.2
 - AHCAL: Concept for continous readout
 - ScintGlass HCAL: cm scale tiles
- Task 1.3
 - T-SDHCAL: Study of the impact of timing on the PFA performance
 - MPDG-HCAL: Completion of 6 layer 20x20 cm² proto
 - ADRIANO3: Small scale test layers

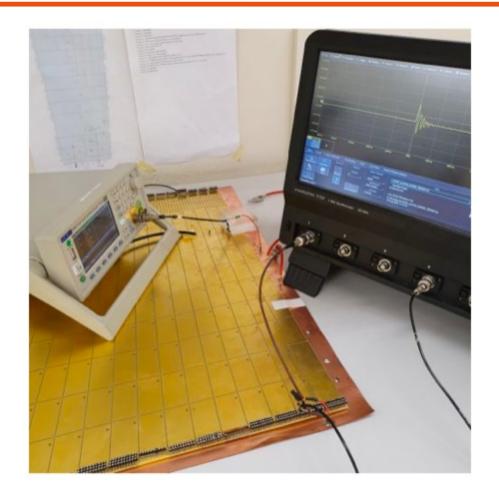
Deliverables


- Task 1.1
 - SiW ECAL: Revised 15 layer stack
 - Updated set of compact detector layers

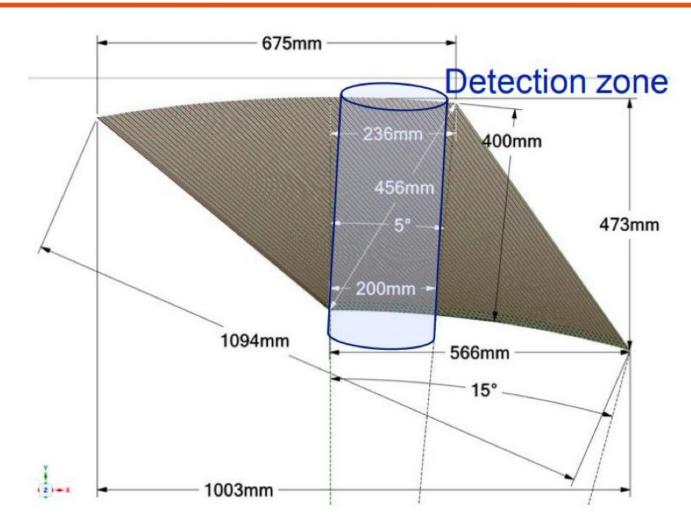
Work Package 2 – Liquified Noble Gas Calorimeters

- LAr Calorimetry is proven technology since a few decades ATLAS, H1, DO, NA31
- Challenge is to make the technology "fit" for future hadron and lepton machines
- Design is driven by particle flow
 - ATLAS Jet-Energy resolution based on PFA
 - ~24% at 20 GeV and 6% at 300 GeV
- => Increase of granularity
 - Goal: Factor ~10 w.r.t. ATLAS LAr Calorimeter
 - 220 kCells -> ~2 MCells




Work Package 2 – Liquified Noble Gas Calorimeters

- Development of a multilayer PCB
 - HV Layer on both sides
 - Readout layer on both sides
 - Connected to signal trace


- One signal trace is economical solution to reduce signal traces
- Pick-up of signal from both sides increases
 S/N

Challenges:

- Control number of signal traces
- Big number of capacitances => Noise
 - Goal is 300 keV Noise for 200 pF cell (S/N > 5)
 - FCC-ee allows for higher integration times
- Cold electronics?

Work Package 2 – Toward a prototype

N. Morange, FCC-France Meeting 2023

Workplan

Absorbers

- Find best compromise in feasibility, between thickness, rigidity, support structures
- Prototypes in 2024 and 2025

Small module

- Requires to put everything together
- Design in 2024 and 2025
- Assemble and test at warm temperatures in 2027
- Cold tests and testbeam in 2028

Infrastructure

- Use of common tools (EUDAQ...) would facilitate the integration in a testbeam facility
- Strong testbeam expertise from some institutes

$\operatorname{Project}$	DRDTs	Milestone	Deliverable	Description	Due date
Noble-Liquid		M2.1		Design review of test module - sign-off	2025
_	6.1, 6.2, 6.3		D2.1	Test module assembled	> 2026
Calorimeter	-	M2.2		Test module ready for cool-down	> 2026

Work Package 3 – Optical Calorimeters

Project	Scintillator/WLS	Photodetector	$\mathbf{D}\mathbf{R}\mathbf{D}\mathbf{T}\mathbf{s}$	Target			
Task 3.1: Homoge	Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters						
HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-			
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-			
Crilin	PbF_2 , PWO -UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$			
Task 3.2: Innovat	ive Sampling EM calor	rimeters					
GRAiNITA	ZnWO ₄ , BGO	SiPMs	6.1, 6.2	e^+e^-			
SpaCal	GAGG, organic	MCP-PMTs,SiPMs	6.1, 6.3	$\mathrm{e^{+}e^{-}/hh}$			
RADiCAL	_		6.1, 6.2, 6.3	e^+e^-/hh			
Task 3.3: (EM+)]	Hadronic sampling calc	orimeters					
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-			
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^{+}e^{-}/hh}$			
Task 3.4: Materials							
ScintCal	-	-	6.1, 6.2, 6.3	$e^{+}e^{-}/\mu^{+}\mu^{-}/hh$			
CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments			
	NaMoO, ZnMoO						

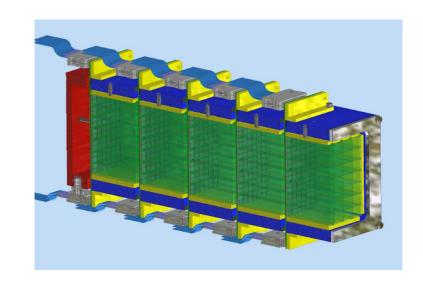
WP 3 Task 3.1 – (Quasi) Homogeneous EM Calorimeters

Task 3.1: Home	ogeneous and quasi-homoger	neous EM calorim	eters	
HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-
Crilin	PbF_2 , $PWO-UF$	SiPMs	6.2, 6.3	$\mu^+\mu^-$

HGCCAL

- Highly granular EM crystal based calorimeter to exploit maximum potential of PFA algorithms
- Integration, reconstruction driven by grid layout
- High density scintillating crystals with double-ended SiPM readout

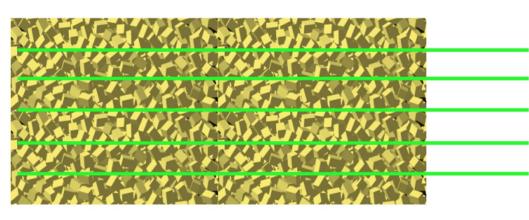
EM calorimeter module: a grid of ~1x1x40cm³ crystal bars


MAXICC

- Homogeneous EM calorimeter based on segmented crystals with SIPMs readout and dual-readout capability
- Simultaneous readout of scintillation and Cherenkov light signals from the same active element (heavy inorganic scintillator)

CRILIN

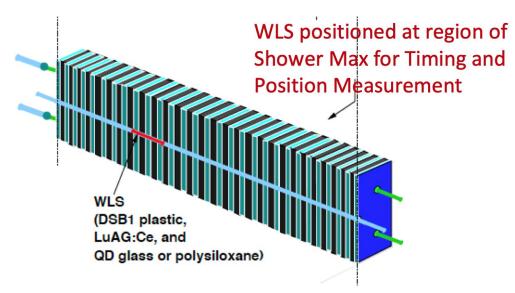
- Radiation tolerant design of a longitudinally segmented crystal EM calorimeter.
- Very harsh radiation environment for SiPMs, high rate of operation, large beam induced background (BIB).
- Lead fluoride (PbF2) crystals, each read out with 2 channels consisting of a pair of SiPMs connected in series


WP3 Task 3.2 - Innovative Sampling EM Calorimeters


Task 3.2: Innova	ative Sampling EM cal	orimeters		
GRAiNITA	$ZnWO_4$, BGO	SiPMs	6.1, 6.2	e^+e^-
SpaCal	GAGG, organic	MCP-PMTs,SiPMs	6.1, 6.3	$\mathrm{e^{+}e^{-}/hh}$
RADiCAL	LYSO, LuAG	SiPMs	6.1, 6.2, 6.3	e^+e^-/hh

GRAINITA

- Innovative technique inspired by Shashlyk-type calorimeters.
- Extremely fine granularity.
- Grain of scintillator in dense liquid



- SpaCal (ECAL made of scintillating fibres in dense absorbers) with O(10-20) ps time resolution
- Radiation-hard (and radiation-tolerant) scintillating fibres
- Crystal or organic fibres in lead or tungsten absorber, hollow light guides, PMT/SiPM photon detectors, SPIDER ASIC for timing

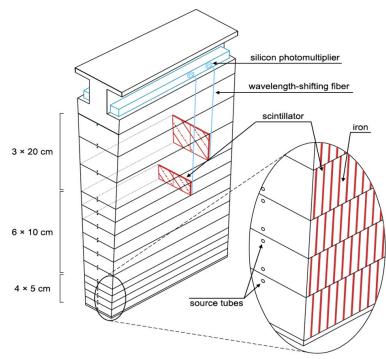
RADICAL

- Radiation-hard EM calorimeter with 10%/√E energy resolution and 25 ps timing resolution
- Radiation-hard WLS filament and SiPM Shashlik/type ECAL modules with tungsten absorber and LYSO:Ce tiles,
- WLS (full-length or in shower maximum),

WP3 Task 3.3 - (EM+) Hadronic Sampling Calorimeters

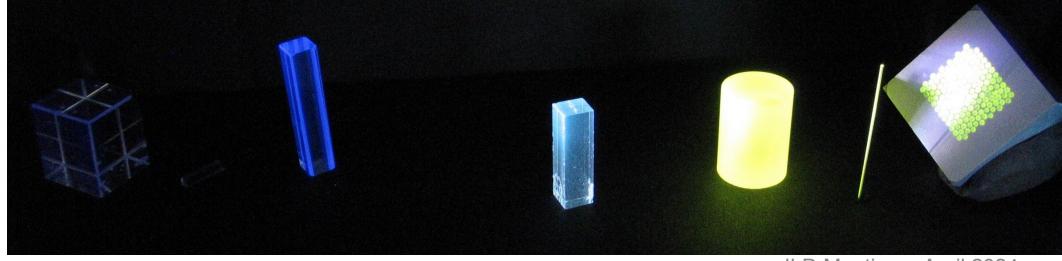
Task 3.3: (EM+)Hadronic sampling calorimeters						
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-		
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^{+}e^{-}/hh}$		

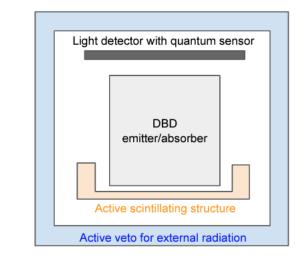
DRCal


- High resolution Electromagnetic and hadronic calorimeter based on Dual-Readout Technique
- Organic scintillating fibres in brass or steel absorber (different solutions under development).
- SiPM or MCP-PMT photon detectors integration of a large number of SiPMs

TileCal

- Hadron calorimeter with scintillating tiles and WLS fibre readout and SiPMs
- Cost-effective production of tiles, radiation hardness for FCC-hh
- Organic scintillating tiles, Steel (+Pb for FCC-hh) absorber


WP3 Task 3.3 - (EM+) Hadronic Sampling Calorimeters



Task 3.4: Materials						
ScintCal	-	-	6.1, 6.2, 6.3	$e^{+}e^{-}/\mu^{+}\mu^{-}/hh$		
CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments		
	NaMoO, ZnMoO					

- R&D on various scintillators and wavelength shifters
- Optimisation of materials (e.g. for radiation hardness, decay time, collection of Cherenkov light, mass production)
- Technology: Inorganic and organic scintillators, glasses, ceramics, quantum materials

- Future generations of double beta decay experiments based on cryogenic calorimeters benefit from a joint development of new scintillating materials
- Use as targets, active structural components or veto systems

WP3 – Milestones and Deliverables

	Milestone	Deliverable	Description	Due date
	M3.1		Specifications of crystal, SiPM and electronics for highly granular	T4254
			EM crystal calorimeter prototype	2024
		D3.1	Development of 1-2 crystal EM modules to be exposed to beam tests	2024
	M3.2		Beam tests characterisation of a full containment highly granular	2025
HGCCAL	272.21.21		EM crystal calorimeter prototype	
	M3.3		A first mechanical design for a final detector with crystal modules	2025
	M3.4	-	New reconstruction software for the long-bar design and updated PFA	2026
		D3.2	Large crystal module for hadronic performance, system integration	
			studies and combined testbeam with HCAL	>2026
	M3.5		Completion of qualification tests on components and selection	2025
			of crystal, filter and SiPM candidates for prototype	
	M3.6		Report on the characterisation of crystal, SiPM and optical filter	2025
MAXICC		Daa	candidates and their combined performance for Cherenkov readout	2020
		D3.3	Full containment dual-readout crystal EM calorimeter	2026
	1.50.77		prototype and testbeam characterisation	- 0000
	M3.7		Joint testbeam of EM module prototype with dual-readout	>2026
		D2.4	fibre calorimeter prototype (DRCAL)	2024
		D3.4	Acquisition and tests of crystals and SiPMs;	2024
			design and production of electronics boards;	
C-:1:		Da E	design and production of the mechanical components	2025
Crilin	M3.8	D3.5	Calorimeter fully assembled	2025
	M3.8		Beam test characterisation of a full containment EM calorimeter prototype	2025
	M3.9		Report on testbeam results	2026
	M3.10		Characterisation of materials, wavelength shifters	2024
	W13.10		and SiPMs and identification of best technological choices	2024
GRAiNITA		D3.6	Development of a GRAiNITA demonstrator as EM calorimeter	2026
		D3.0	prototype for e+e- collider (full shower containment)	2020
		D3.7	Tungsten and lead absorbers for module-size prototypes	2024
	M3.11	D3.1	Design of optimised light guides	2025
	WI3.11	D3.8	Set of crystal samples, SPIDER ASIC prototype	2026
SpaCal	M3.12	20.0	Specification of photon detector and	2026
расы			improved simulation framework available	2020
		D3.9	Module-size prototypes (significantly larger than EM showers)	>2026
			built and validated in beam tests	
		D3.10	Single module with prototype scintillating crystals, SiPMs and front-end	2024
			electronics cards built and tested.	
		D3.11	3x3 array of RADiCAL modules built and tested	2026
RADiCAL	M3.13		Paper on beam-test results for EM shower position, timing and energy	2026
	M3.14		Continue beam testing with alternative scintillation and	>2026
			wavelength shifting materials - for improved cost/performance.	
		D3.12	Construction of full-scale dual readout module with hadronic shower	2025
DDG 1			containment	
DRCal	M3.15		Testbeam campaign to assess module performance: result paper	2026
	M3.16		Continue beam testing with alternative readout elx	>2026
	M3.17		Characterisation of PEN- and PET-based scintillating tiles	2025
			including optimisation of readout with WLS fibres and SiPMs	
T:1-C-1		D3.13	Construction of up to 3 prototypes of a sampling tile calorimeter	2026
TileCal			module with WLS fibres and SiPM readout (for beam tests after 2026)	
	M3.18		Paper on beam test results	>2026
		D3.14	Full hadron-shower containment prototype built and tested	>2026
	M2 10		Dataset of scintillation and radiation hardness properties of various	2026
	M3.19		scintillation materials studied	2026
				2026
Scint Cal		D3.15	Samples of a set of scintillators produced and characterised	2020
ScintCal		D3.15 D3.16	Samples of a set of scintillators produced and characterised Samples of most promising glasses produced and characterised	>2026
ScintCal	M3.20		Samples of most promising glasses produced and characterised Material selected for future detectors	
ScintCal	1000 EV 1000		Samples of most promising glasses produced and characterised	>2026 >2029
ScintCal	M3.20 M3.21		Samples of most promising glasses produced and characterised Material selected for future detectors	>2026
ScintCal CryoDBDCal	1000 EV 1000		Samples of most promising glasses produced and characterised Material selected for future detectors Report crystals in terms of optimisation of growing/doping	>2026 >2029

3 Milestones and 4 deliverable in 2024

Milestones

- Task 3.1
 - HGCCAL: Specifications of crystal, SiPM and electronics for highly granular EM crystal calorimeter prototype
- Task 3.2
 - GRAiNITA: Characterisation of materials, wavelength shifters and SiPMs and identification of best technological choices
- Task 3.4
 - CryoDBDCal: Report crystals in terms of optimisation of growing/doping procedures

Deliverables

- Task 3.1
 - HCCCAL: Development of 1-2 crystal EM modules to be exposed to beam tests
 - Crilin: Acquisition and tests of crystals and SiPMs; design and production of electronics boards; design and production of the mechanical components
- Task 3.2
 - SpaCal: Tungsten and lead absorbers for module-size prototypes
 - Radical: Single module with prototype scintillating crystals,
 SiPMs and front-end electronics cards built and tested

Workpackage 4 – Electronics and DAQ

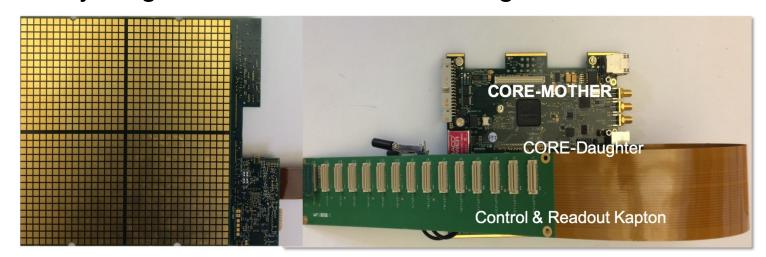
Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM,timing via CAENFERS, AARDVARC-v3,DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

Different calorimeter types but similar challenges

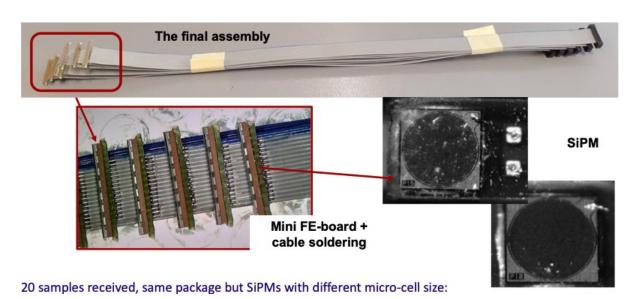
Trends:

- On-detector embedded elx.
 - Challenges
 - #channel,
 - Low power
 - Digital noise
 - Data reduction
- Off-detector electronics:
 - Challenges for fibre/crystal readout
 - Low power
 - Data reduction
- Digital calorimetry:
 - Challenges:
 - (extreme) #channels,
 - Low power
 - Data reduction

Workpackage 4 – Electronics and DAQ


- The main goal will be to avoid parallel developments
 - Take CALICE as example
- Gather community of "calorimeter electronics developpers"
 - Share expertise and experimental results
 - Address specificities of calorimetry
 - Share fabrication (engineering) runs to equip calorimeter prototypes
- Evoke possibility to hook onto production for other large projects (EiC?)
- Close communication with DRD 3 and DRD 7

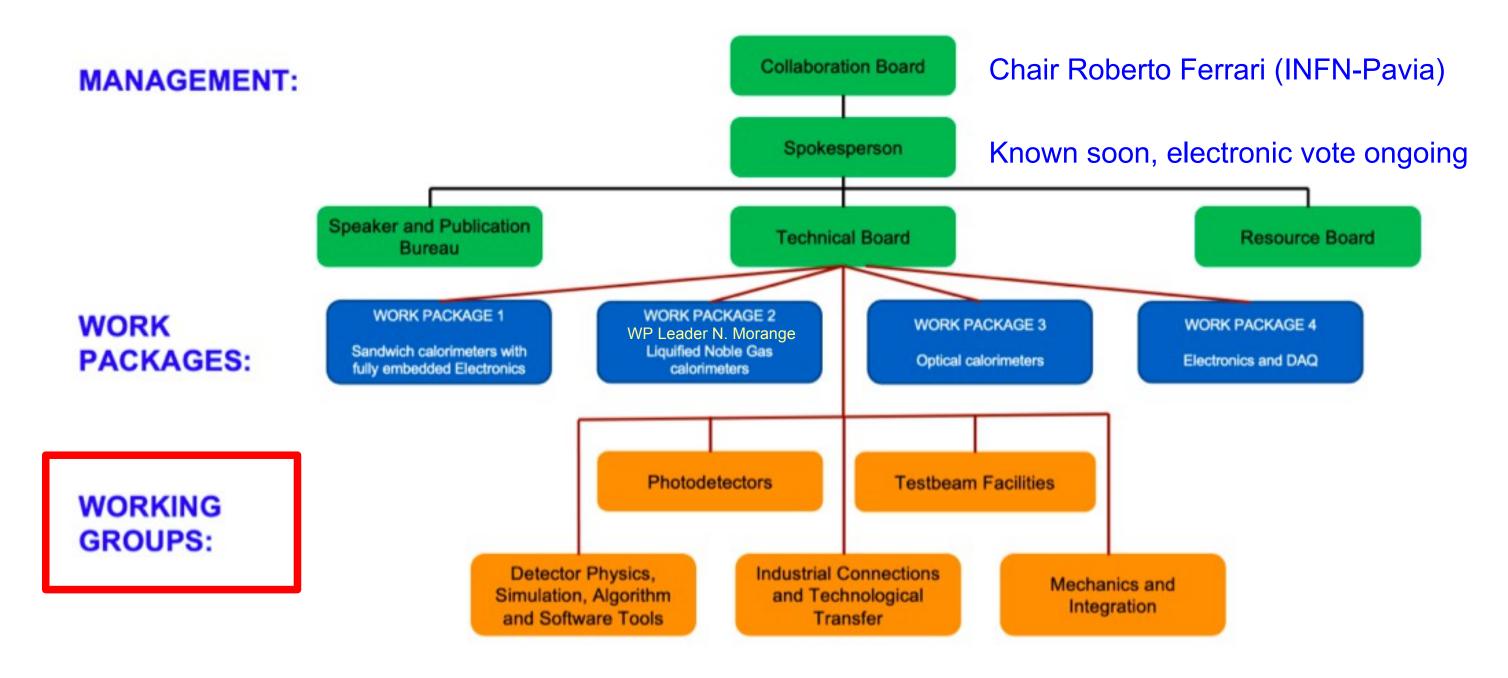
	DRDTs	Milestone	Deliverable	Description	Due date
Electronics and DAQ	6.1, 6.2, 6.3	M4.1		Specifications for common ASIC production	2024
			D4.1	Common ASIC production	2025



Work Package 4 – Electronics and DAQ – High density readouted Calo

From embedded ASICs to off-detector DAQ Early stage data concentration for e.g. SiW ECAL

Transmitting signals to off-detector electronics e.g. SiPM readout for dual readout



- High cell density requires innovative solutions for data concentration and signal transmission
- Have to think system integration from the beginning
- Have to make sure that connectivity does not become the bottleneck
 - It is often the cheapest piece that screws up everything

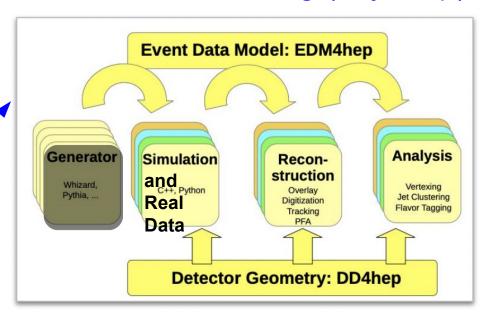
DRD Calo – Basic structure

Working Groups – General Scope

- Working Groups will address work that is common to all work packages in the DRD
- They thus ensure coherence and synergy of the scientific program of the DRD itself
- Some Working Groups cover service tasks
 - Organisation and conduction of beam tests, if possible in a dedicated beam area for calorimetry
 - Software tools
- The detailed organisation of the work within each working group is under the responsibility of dedicated coordinator(s) or directly under the responsibility of Technical Coordination

Working Groups – Software

Data Acquisition and Monitoring



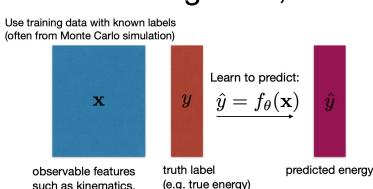
otsdaq@FNAL

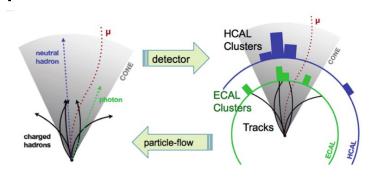
Your favorite Calo Prototype(s)

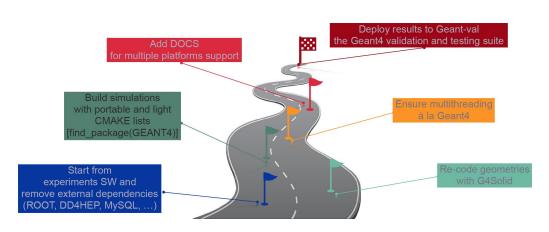
Data/Event Processing (key4hep)

Physics output

From experiments to geant-val, a winding road 54




Exploitation:


such as kinematics.

tracks...

Pattern recognition, s/w compensation

Working Groups – Testbeams ...

Generic Equipment and Tools

Your favorite
Calo Prototype(s)

Beam Line Infrastructure

- Many items are common to all projects
- Common coordination will streamline beam test programme

ILD Meeting – April 2024

Overall Planning

Communication with Operators

Dedicated Calorimeter Beam Area

Common setup at CERN June 2022

- Calorimeters are typically large objects
 - A beam test is similar to a small experiment
- Difficult for facility managers to schedule calorimeter beam tests
 - No concurring running with other devices possible
- Takes lots of expertise to carry out a successful beam test campaign
 - Implies use of infrastructure
- A dedicated beam area maybe with dedicated slots during a year may help curing these issues
 - Would need sustained expertise on the beamline
- R&D programme has to cope with facility schedules
 - e.g. CERN-SPS essentially closed 2026-2028

Match Irradiation/Beamtest Facilities Detector Needs

	Energy	Irradiation
Higgs Factory CMS energy 90-1 TeV Radiation <= 10 ¹⁴ n _{eq/} cm ²		
HL-LHC CMS energy 14 TeV (shared by partons) Radiation ~10 ¹⁶ n _{eq} /cm ²	(/)	
Muon Collider CMS energy 3-10 TeV Radiation ~HL-LHC	X	
Future Hadron Collider CMS energy 100 TeV (shared by partons) Radiation up to ~10 ¹⁸ n _{eq} /cm ²	X	

DRD Calo - Proposal Team

Coordinators: Roberto Ferrari, Gabriella Gaudio (INFN-Pavia), R.P. (IJCLab)

Representative from ECFA Detector R&D Roadmap Coordination Team: Felix Sefkow (DESY)

WP 1: Sandwich calorimeters with fully embedded Electronics – Main and forward calorimeters Conveners: Adrian Irles (IFIC, adrian.irles@ific.uv.es), Frank Simon (KIT, frank.simon@kit.edu), Jim Brau (University of Oregon, jimbrau@uoregon.edu), Wataru Ootani (University of Tokyo, wataru@icepp.s.u-tokyo.ac.jp), Imad Laktineh (I2PI, imad.laktineh@in2p3.fr), Lucia Masetti (masetti@physik.uni-mainz.de)

WP 2: Liquified Noble Gas Calorimeters

Conveners: Martin Aleksa (CERN, martin.aleksa@cern.ch), Nicolas Morange (IJCLab, nicolas.morange@ijclab.in2p3.fr), Marc-Andre Pleier (mpleier@bnl.gov)

WP 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters Conveners: Etiennette Auffray (CERN, etiennette.auffray@cern.ch), Macro Lucchini (University and INFN Milano-Bicocca, marco.toliman.lucchini@cern.ch), Philipp Poleff (CERN, philipp releff@cern.ch), Sarah Eng (University of Manyland, eng@umd.edu)

Philipp Roloff (CERN, philipp.roloff@cern.ch), Sarah Eno (University of Maryland, eno@umd.edu),

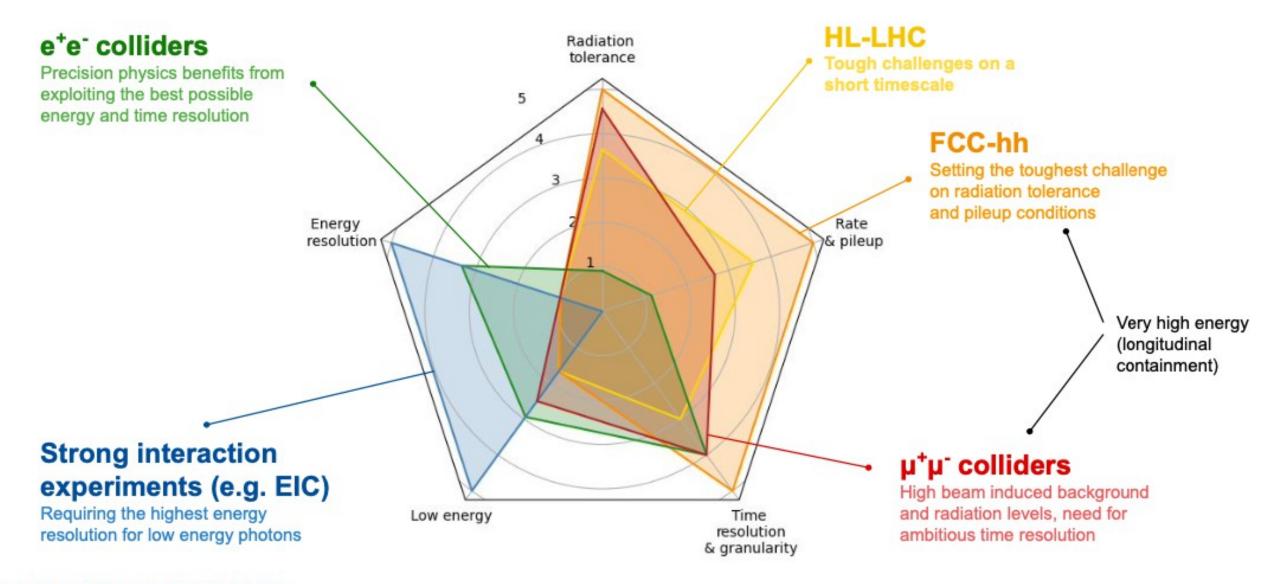
Hwidong Yoo (Yonsei University, hdyoo@cern.ch)

WP 4: Electronics and DAQ

Christophe de la Taille (OMEGA, taille@in2p3.fr)

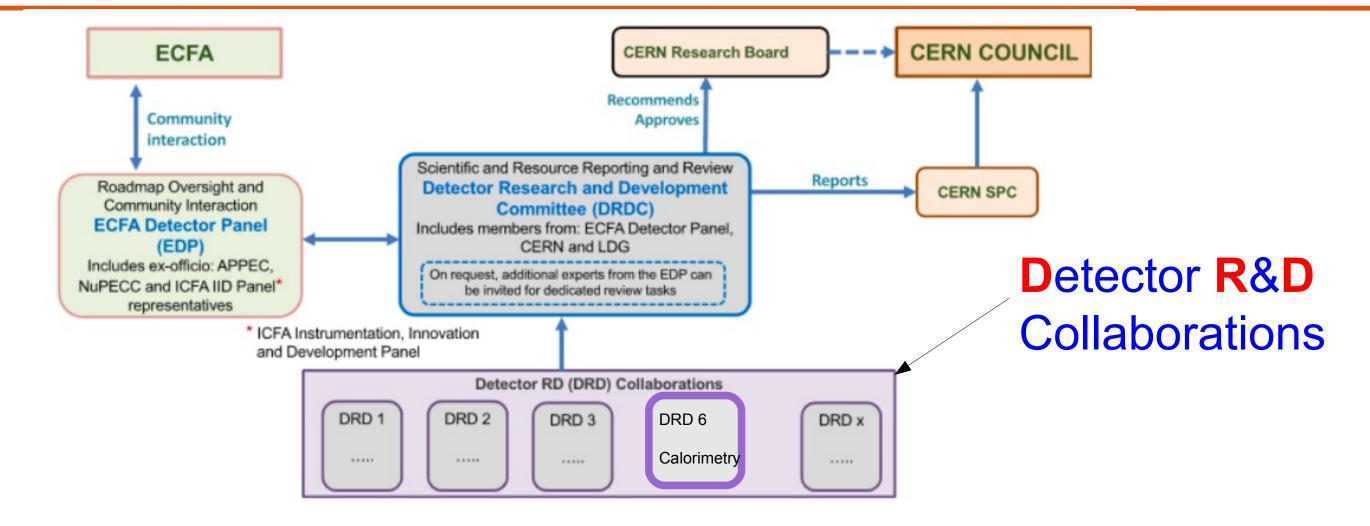
Transversal Activities

Photodetectors: Alberto Gola (FBK, gola@fbk.eu)


Conclusions

- DRD-on-Calorimetry will pursue strategic R&D for calorimeters for future colliders
 - Partially new efforts, partially capitalising on existing activities
- Scientific programme and first ideas of collaboration structure have been worked out by Proposal Team in collaboration with community
- Approval by CERN Research Board to start collaboration on January 1st 2024
- Now progressive move from Proposal Team to full Collaboration structure
- Rich scientific programme covering all candidates for future (HEP) calorimeter system (and beyond)
 - Trends are timing, high granularity
 - Multiple synergies within DRD and wth other DRDs
 - Though "slow ramp-up" lots of activity expected for 2024
- (Four) Resource loaded Work Packages complemented by several Working Groups

Backup


Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

Future Organisation of Detector R&D (in Europe)

- DRD will be hosted by CERN and therefore become legally CERN collaborations
 - Significant participations by non-European groups is explicitly welcome and needed => World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - Thomas Bergauer of ÖAW/Austria appointed as DRDC-Chair
- The funding will come from national resources (plus eventually supranational projects)

Calorimetry - "Current Ecosystem"

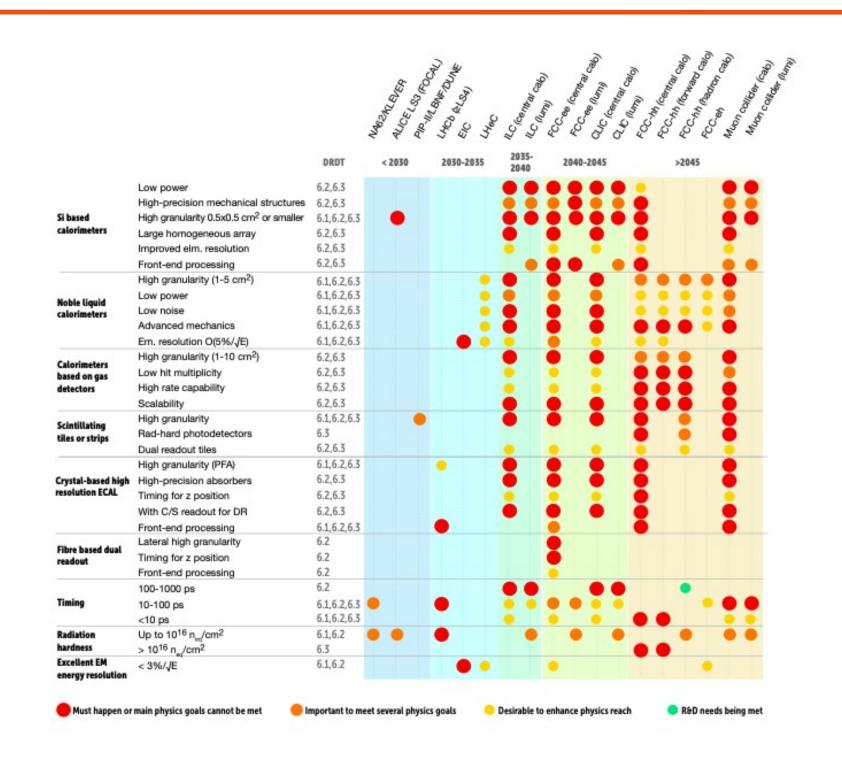
- Proposals comes from pre-existing collaborations or working framework
- Consolidated modus-operandi and experience
- Need to pick up all the best and put into the DRD6 collaboration

Working Groups – Photo Detectors

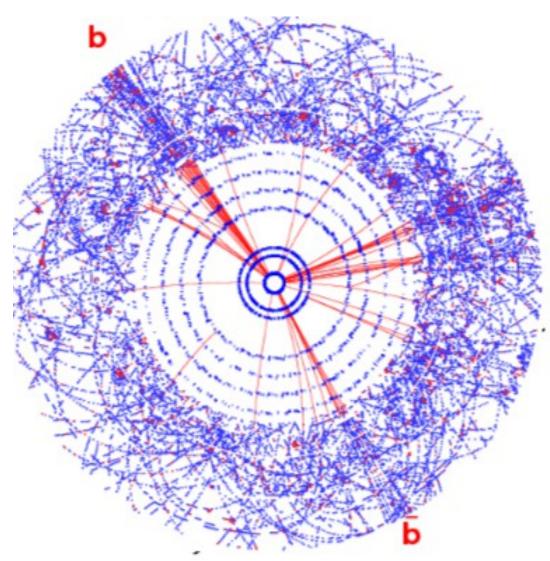
Calorimetry issues:

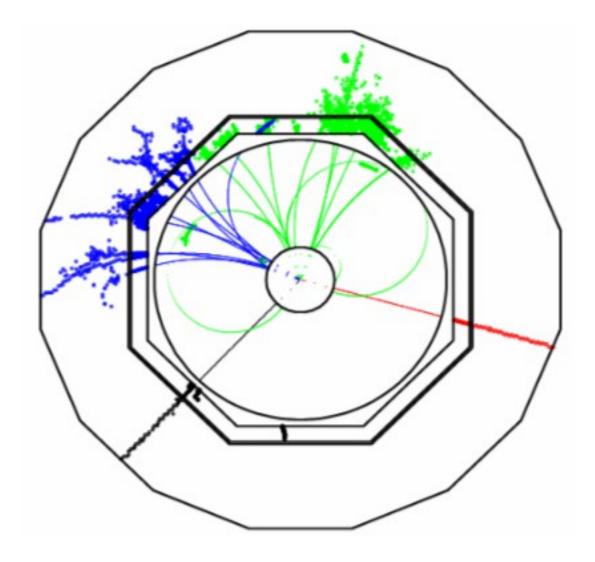
- Linearity
- Dynamic range
- Light yield
- UV and IR sensitivity noise and cross-talk radiation hardness time resolution scalability digital SiPMs
 - → no sensor development in DRD 6, only tuning and customisation of available architectures
 - → coordination with DRD 4 for sensor identification and development
- Quantum photosensors → stay in close contact w/ DRD 5

Setting up the DRD-on-Calorimetry – First actions


- 10th of January 2024
- 1st proto-Collaboration Board Meeting = First event of new DRD-on-Calorimetry Collaboration
 - Recap of way until approval of DRD
 - Outline and discussion of "way ahead"
 - First steps to implement the Collaboration and their endorsement
 - Bootstrap procedure
 - Initial Collaboration structure
 - Preparation of CB-Chair election
- Election of Collaboration Board Chair
 - Meeting on CB Election on February 22nd
 - Roberto Ferrari (INFN Pavia) elected on March 6th
- Preparation of Spokesperson Election
 - Call for proposals until April 4th
 - Electronic vote started on April 11th

Calorimetry- Identified Key Technologies and R&D Tasks


- Key technologies and requirements are identified in ECFA Roadmap
 - Si based Calorimeters
 - Noble Liquid Calorimeters
 - Calorimeters based on gas detectors
 - Scintillating tiles and strips
 - Crystal based high-resolution Ecals
 - Fibre based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
- R&D Tasks are grouped into
 - Must happen
 - Important
 - Desirable
 - Already met


(Rough) Comparison – Hadron collisions ↔ e⁺e⁻ collisions *DRD Calo*

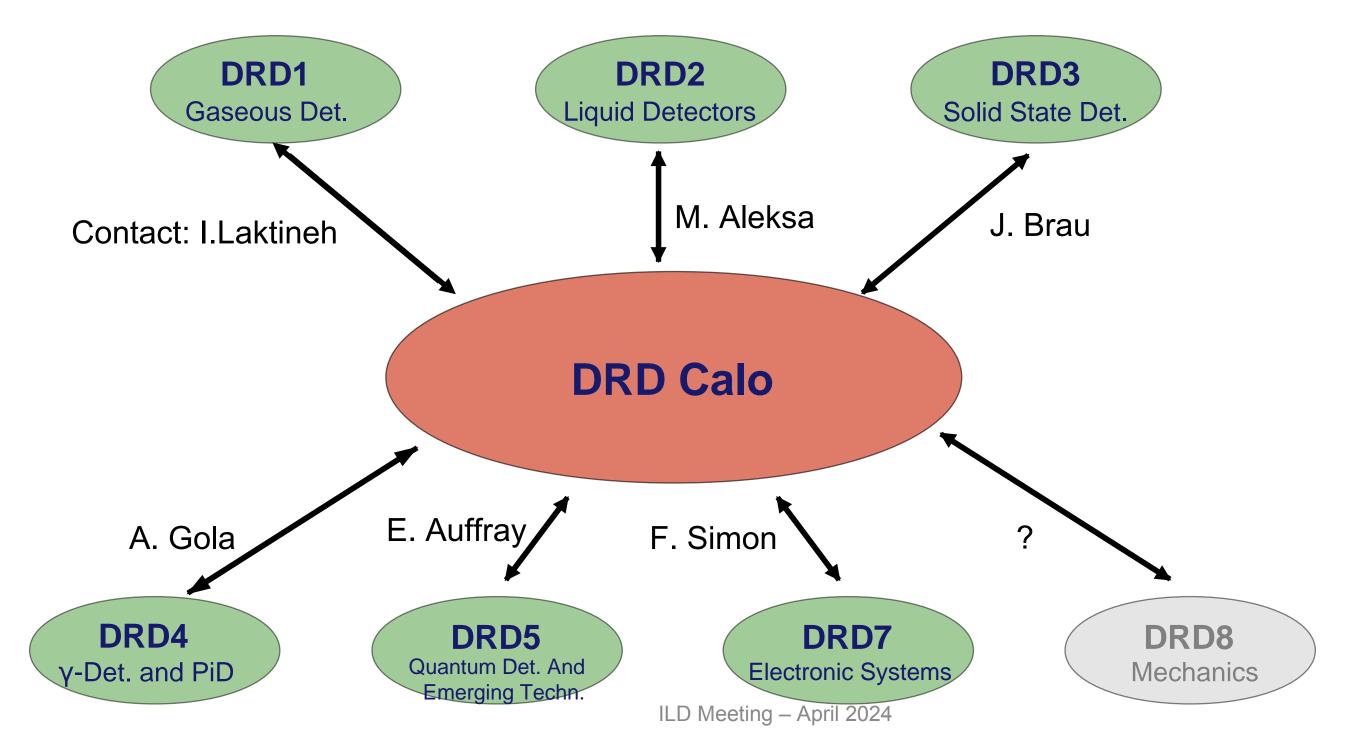
Hadron-hadron collisions e.g. LHC

- Busy events
- Require hardware and software triggers
- High radiation levels

e⁺e⁻-collisions

- Clean events
- No trigger (??)
- Full event reconstruction

46 Slide from Y. Sirois


Working Groups – Software

- Calorimeter prototypes are small experiments with physics output
- Full benefit requires powerful software chain
- Establishment and coordinated application of software tools calls for s/w Working Group
 - ... lead by dedicated s/w coordinator(s)
- Operational common software tools are essential for comparing results of (friendly) competing technologies on equal footing
- Work Packages (and therefore funding agencies) have to dedicate resources (human and monetary) to software tools

DRD Calo – Interplay wth other DRDs

No R&D on primary elements (apart from scint. materials) but adaptation, tuning and integration

