<u> 素粒子物理とコライダ-</u>

Hitoshi Murayama (Berkeley, Kavli IPMU Tokyo) Pre-LCWS2024 School July 7, 2024 将来電子・陽電子コライダーの物理と技術

Why accelerators?

Ancient Greeks: Elements

Periodic Table

So many flavors of atoms?

Rutherford

all chemical elements

low energy

resolution=energy

p

- Quantum Mechanics: particle=wave
- higher energy E = cp= shorter wavelength $\Delta x \approx \lambda = \frac{h}{p}$ = better resolution
- Rutherford scattering:
 - E = 8.3 MeVm = 3.7 GeV $\lambda = \frac{hc}{E} = 5.0 \text{ fm}$

deeper into the heart of the matter (literally) increase resolution

Einstein?

My son on Halloween!

Fermi's dream era

- Fermi formulated the first theory of the weak force (1932)
- The required energy scale to study the problem known since then: ~TeV
- We are finally got there with LHC!

Ernest Orlando Lawrence

early cyclotron

Why colliders?

 $\sqrt{s} \simeq 14 \,\,\mathrm{TeV}$

• collider: R=27km

fixed target

challenges

$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s} = \frac{86.8 \text{ fb}}{s/\text{TeV}^2}$$

- unitarity: $\sigma \propto E^{-2}$
 - higher current = higher power
- beam is a "gas" of particles
 - pretty sparse
 - need to squeeze the beam to tiny size
- need to avoid synchrotron radiation
 - energy loss per time
 - can't scale LEP

 $\mathcal{L} = \frac{N_1 N_2}{4\pi\sigma_x \sigma_y} f_{\text{collision}}$ $\Delta E_{SR} = \frac{1}{3\epsilon_0} \frac{e^2 \beta^3 E^4}{Rm^4}$ $P_{\rm synchrotoron} \propto \frac{1}{R^2} \left(\frac{E}{m}\right)^4$ $\frac{(200 \text{ GeV})^2}{27 \text{ km}} = \frac{(1 \text{ TeV})^2}{675 \text{ km}}$ $(1 \text{ TeV})^2$ muon collider: 16 m

Japan is a leader

nano beam

ILC beam is only 7nm high

Japan is a leader

RF cavity

Multiple Wavebands in Astronomy

X-Ray (NASA/CXC/SAO/G.Fabbiano et al.)

Optical (NASA/STScl/B.Whitemore)

Infrared (ESA/ISO/L.Vigroux et al.)

Radio (NRAO/VLA)

Telescopes vs Accelerators

aim	necessity	telescopes	accelerators
better image	better resolution	bigger mirrors, site, AO	higher energy better detector
probe deeper	better exposure	larger telescopes, more time	more powerful beams (luminosity)
full understanding	multiple probes	OIR, radio, X-ray, UV, γ, GW, CR	protons, electrons, neutrinos
Pl mode	different science	time share instruments	facility share detectors
survey mode	large statistics	dedicated survey	collider

What next?

Standard Model

- triumph of 20th century physics
- most successful physical theory ever
- describes three forces:

 but we see problems in the 21st century

С

C

С

е

u

S

h

V.

Pressing Any siblings

What is Higgs?

ls it alone

Any relatives?

- Higgs boson is the only spin 0 particle in the standard model
 - it is faceless
 - one of its kind, no context
 - but does the most important job
- looks very artificial
- we still don't know dynamics behind the Higgs condensate
- Higgsless theories: now dead

Context for Scalar Bosons?

- Supersymmetry
 - Higgs just one of *many* scalar bosons
 - SUSY loops make m_h^2 negative
 - superpartners
- composite
 - spins cancel among constituents
 - condensate by a strong attractive force, holography
 - top partner, pNGBs, vector-like quarks

Extra dimension

- Higgs spinning in extra dimensions
- new forces from particles running in extra D
- KK particles
 - a different "naturalness" argument

Nima's anguish

 $m_{H}=125$ GeV seems almost maliciously designed to prolong the agony of BSM theorists....

By A Pomarol

dream case

for experiments

can measure them all!

Five evidences for physics beyond SM

- Since 1998, it became clear that there are at least five missing pieces in the SM
 - dark matter (2003)
 - neutrino mass (1998)
 - dark energy (1998)

- acausal density fluctuations (2003)
- baryon asymmetry (2003)

Early Universe = laboratory of particle physics

- Weak force is basically the same kind as the electromagnetism
- But then why is its range much shorter than the size of nuclei?
- the range 10⁻¹⁶ cm is just right!

Yerse got colder 4×1015 °K

symmetry gets broken

disorder

order

Just the right amount of Higgs boson for us to exist!

Credit: Newton Japa

Who is he? Why is he frozen? Why do we exist? 5

Cold Atom Laboratory (CAL) on ISS

Science Module

Bose -Einstein Condensation

https://en.wikipedia.org/wiki/File:Bose-Einstein_Condensation.ogv

Why eter?

Democratic

Holistic

Parameter	2012	Nominal	HL-LHC (25 ns)	HL-LHC (50 ns)
C.O.M Energy	8 TeV	13-14 TeV	14 TeV	14 TeV
N _p	1.2 10 ¹¹	1.15 1011	2.0 1011	3.3 1011
Bunch spacing / k	50 ns / 1380	25 ns /2808	25 ns /2808	50ns / 1404
ε (mm rad)	2.5	3.75	2.5	3.0
β* (m)	0.6	0.55	0.15	0.15
L (cm ⁻² s ⁻¹)	~7x10 ³³	1034	7.4 10 ³⁴	8.4 10 ³⁴
Pile up	~25	~20	~140	~260

Holistic

- simple kinematics
- no loss of the longitudinal momentum (modulo photon emission)
- can make use of all final states
 - not just easily identifiable particles (i.e. leptons@LHC)
- capture all information for a given event

$$m_{\rm recoil}^2 = m_Z^2 + s - 2\sqrt{s}E_Z$$

- e⁻, e⁺ are elementary
- collision energy is fixed and known
- entire CM energy can be used for producing particles
- can make particles democratically
- can capture whole information

precision Higgs measurements phenomena not seen at LHC

History of Colliders

- I. precision measurements of neutral current (*i.e.* polarized e+d) predicted m_W , m_Z
- 2. UAI/UA2 discovered W/Z particles
- 3. LEP nailed the gauge sector
- I. precision measurements of W and Z (i.e. LEP + Tevatron) predicted m_H
- 2. LHC discovered a Higgs particle
- 3. LC nails the Higgs sector?
- I. precision measurements at LC predict ???

The ALEPH Detector

"New particle" has spin l

gluon

LEP-II $\sqrt{s}=200GeV$

Why 250 GeV?

- 1980's: 1.5 TeV minimum
 - we didn't know whether EWSB was strongly or weakly coupled
- 2000's: 500 GeV
 - LEP told us it is likely to have a Higgs boson <250 GeV
- 2012: 250 GeV
 - m_H =125 GeV, ZH production possible
 - 350 GeV t tbar pr

Future of colliders

4

 $E^{}$

m

Towards 10 TeV pCM

- Ultimate direct discovery reach of TeV scale phenomena
- Possible with hadron (FCC-hh @ 100 TeV) or muon colliders, but R&D is needed

• Higgs physics:

 Probe the electroweak phase transition; Higgs self coupling measurements to 5% precision

• Direct beyond the SM searches:

- Direct discovery of the particles responsible for any deviations observed in Higgs factory
- Dark matter: "reach the thermal WIMP target for minimal WIMP candidates"

New enabling technologies

Muon production and cooling

<u> 素粒子物理とコライダ-</u>

Hitoshi Murayama (Berkeley, Kavli IPMU Tokyo) Pre-LCWS2024 School July 7, 2024 将来電子・陽電子コライダーの物理と技術

