ILC accelerator technology and its physics background

Akira Miyazaki CNRS/IN2P3/IJCLab Université Paris-Saclay

LCWS2024 pre-school

ILC and the Accelerator Technology

Courtesy: Shin Michizono SRF2023

Outline

- How to measure Higgs boson precisely? (10 min)
	- High luminosity with high energy
	- Solutions: circular vs linear
- High luminosity (10 min)
	- Nano beam technology
- High energy (10 min)
	- Superconducting Radio Frequency technology
- Conclusion

Outline

- How to measure Higgs boson precisely? (10 min)
	- High luminosity with high energy
	- Solutions: circular vs linear
- High luminosity (10 min)
	- Nano beam technology
- High energy (10 min)
	- Superconducting Radio Frequency technology
- Conclusion

Start from a purpose of ILC: Higgs boson arXiv:1407.2133

How to achieve higher $\mathcal L$: circular collider

 n_b bunches no bunches $f_c = f_{rev} \times n_h$ Revolution frequency: f_{rev}

Synchrotron radiation: a limitation of rings

$$
\Delta E \propto \frac{\gamma^4}{R} = \left(\frac{E}{m}\right)^4 \frac{1}{R}
$$

For electrons

$$
\Delta E[\text{keV}] = 88.5 \times \frac{(E [\text{GeV}])^4}{R [\text{m}]}
$$

For FCCee ZH operation (125 GeV, 26.7 mA)

 ΔE [keV]~1.89 GeV

Power loss

$$
P = 2 \times \Delta E \times I_e = 100 \text{ MW}
$$

One nuclear power plant: 1 GW \rightarrow 10% ...

How to achieve higher L : linear collider

For ILC250 operation (125 GeV, 5.8 mA, 5 Hz, 0.73 ms)

Duty cycle $5\times0.73 = 0.36\%$

Power loss (beam dump)

 $P = 2 \times E \times I_e \times f_{ren} \times L_{pulse} = 5.3$ MW (Still quite waste…) Compare ILC and FCCee (and others...) $L \sim$ $N_e + N_e$ - $4\pi\sigma_x\sigma_y$ $\times f \times n_b$

- Both are almost comparable for Higgs measurement
- Circular colliders are better for lower energy (Z-pole)
- Linear colliders are more advantageous for higher energy (ttbar, HHH)
- For even higher energy: FCChh, MuCol, Plasma (energy scale of new physics?)

Outline

- How to measure Higgs boson precisely? (10 min)
	- High luminosity with high energy
	- Solutions: circular vs linear
- High luminosity (10 min)
	- Nano beam technology
- High energy (10 min)
	- Superconducting Radio Frequency technology
- Conclusion

Particle bunch in the phase space

Lorentz boost and emittance(s)

$$
v_x = \frac{dx}{dt}
$$

\n
$$
z = v_z t \sim ct \to \frac{1}{c} \frac{d}{dt} = \frac{d}{dz} \to v_x = \frac{dx}{dz} \quad (c = 1)
$$

Geometrical emittance

Normalized emittance

$$
\varepsilon_{nx} = \frac{1}{m} \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle xp_x \rangle^2} \quad \longrightarrow \quad \varepsilon_x = \sqrt{\langle x^2 \rangle \langle x^2 \rangle - \langle xx' \rangle^2}
$$

Lorentz invariance (\rightarrow *entropy)*

Adiabatic damping

$$
\varepsilon_x \sim \frac{\varepsilon_{nx}}{\gamma} \quad \to \sigma_x = \sqrt{\langle x^2 \rangle} \propto \sqrt{\varepsilon_x} \sim \sqrt{\varepsilon_{nx}/\gamma}
$$

Nanobeam prototype @ KEK

Focusing towards Nano-beam

Focusing towards Nano-beam

Relativistic thermodynamics (?)

Relativistic Thermodynamics of Moving Systems

N. G. van Kampen Physics Department, Howard University, Washington, D.C. (Received 10 May 1968)

Progress of Theoretical Physics, Vol. 128, No. 3, September 2012

Three Views of a Secret in Relativistic Thermodynamics

Tadas K. NAKAMURA

Fukui Prefectural University, Fukui 910-1195, Japan

Entropy = normalized emittance: Lorentz invariance

More fundamentally, what is the temperature in an accelerated frame? \rightarrow temperature under gravity)

Outline

- How to measure Higgs boson precisely? (10 min)
	- High luminosity with high energy
	- Solutions: circular vs linear
- High luminosity (10 min)
	- Nano beam technology
- High energy (10 min)
	- Superconducting Radio Frequency technology
- Conclusion

RF electric fields accelerate synchronized particles

E-field vector

Courtesy: F. Bouly

 Z position (m)

$$
\begin{cases}\n\nabla \cdot \mathbf{E} = 0 \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \\
d\mathbf{p}\n\end{cases}
$$

 dt

- Maxwell equations under boundary conditions
- Eigenmode solution:

TM $_{010}$ π mode 1.3 GHz

 $q[E + v \times B]$ Acceleration of particles

Cryomodule: SRF cavity cryostat in accelerators

- Beam takes (per cavity) 31.5 MV⁄m ×1m ×5.8 mA~183 kW
- Cryogenic loss static loss 1 W, cavity RF loss 10 W
- Beam power >> cryogenic power

Question **Why do superconducting cavities have finite RF loss?**

Superconducting cavity for $R_s \rightarrow 0$?

Heike Kamerlingh Onnes

```
Nobel prize in 1913
```
 $\boldsymbol{\rho} = \boldsymbol{0}$ below transition temperature T_c

Electrons in a *perfect* metal are free (or independent)

Perfectly periodic potential by ions does *NOT* scatter electrons (Bloch's theorem)

These electrons are *NOT* our favorite elementary particle of $m = 511$ keV

These electrons are *dressed* by complicated electromagnetic property of metals to have an effective mass m^* given by a band structure à *Quasi-particles*

Electron-electron scattering? \rightarrow Pauli's exclusion principle Cf. Fermi-liquid theory by Landau

In reality, imperfection causes quasi-particle scattering $\frac{1}{23}$

Electrons in real metals show Ohmic loss

Paired electrons can avoid Ohmic loss

If electrons *in a distance* (>39 nm) are bounded, *local* (< 0.5 nm) scattering can be avoided

Any small attractive interaction V between electrons can lead to a *Cooper pair* coupled with an energy 2Δ , below critical temperature T_c BCS gap equation (1957)

$$
Non-perturbative! \qquad \qquad \hbar \omega_D
$$
\n
$$
\Delta = n(E_F)V \int\limits_{\Delta}^{h \omega_D} \frac{\Delta}{\sqrt{\xi^2 + \Delta^2}} \tanh\left(\frac{1}{2}\frac{\sqrt{\xi^2 + \Delta^2}}{k_B T}\right) d\xi
$$

Classical superconductors' attractive potential is from *longitudinal mode of lattice vibration*

 $e^ e^$ **phonon** \boldsymbol{k} $k + q$ $-k'$

If energy transfer $|\epsilon_{k+q} - \epsilon_k|$ is smaller than phonon energy the interaction is attractive (Flöhlich) \rightarrow Eliashberg's strong coupling superconductor (1960) 25

Cross-over of particle physics and condensed matter physics

PHYSICAL REVIEW

VOLUME 122. NUMBER 1

APRIL 1, 1961

Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I*

The vacuum is similar to the superconducting state

Yoichiro Nambu

- **Particle mass = superconducting gap** (gauge symmetry is spontaneously broken in the ground state)
- \rightarrow Chiral symmetry breaking, Higgs mechanism, Electroweak theory, (and new physics?)

Nonrelativistic composite $U(1)_{F\mid M}$ Higgs

Ginzburg-Landau theory ($T \to T_c$ of BCS theory, $\Psi = \Delta$)

$$
F = (\nabla \times A)^2 + \frac{\hbar^2}{4m_e} |(\nabla + ieA)\Psi|^2 + \frac{g}{4} (|\Psi|^2 - v^2)^2 \sim \phi^4 \text{ theory}
$$

EM energy Scaler Kinetic energy Scaler potential

Excitation around potential minimum ν at fixed gauge (Unitary gauge) $\Psi(x) \rightarrow v + \phi(x)$

Kinetic term

 $|(\nabla + ieA)\Psi|^2 = |\nabla \phi|^2 + e^2 \nu^2 |A|^2 + \cdots$

Gauge field gains mass: Nambu-Goldston mode is absorbed by photon $e^2 v^2 |A|^2 \equiv m_v |A|^2$ $\nabla^2 - m_v^2$) $A = 0$ \leftrightarrow London eq. \rightarrow Massive photon \rightarrow finite interaction length: penetration depth $\lambda_L =$ 1 m_ν \sim 36 nm Higgs mode ϕ has a mass $m_S = v\sqrt{g}$: coherence length $\xi_0 =$ 1 $m_{\rm s}$ \sim 39 nm (Nb) (Nb)

R. Matsunaga et al PRL 111 057002 (2013)

Superconductor \neq Perfect electric conductor

Meissner effect **differentiates them**

Superconductivity is a thermodynamical state which expels magnetic fields and cannot be explained by classical electrodynamics (input from quantum physics!)

Response to RF – two fluid model –

Surface resistance of superconductor

Lessons

y

- One origin of the finite R_s of superconductors is quasi-particles
- Quasi-particles are thermally activated from Cooper pairs at $0 < T < T_c$
- R_s exponentially decreases by lower T because quasi-particles are frozen out
- Higher RF frequency increases $R_s \!\sim\!\omega^2$

A bit more fundamental: linear response theory

Strong and static magnetic field \rightarrow topological defects

 \rightarrow Trapped magnetic vortices are harmful to SRF cavities

Additional loss from magnetic flux oscillation

Relevant critical field for SRF: superheating field

1st order phase transition can be *metastable*

https://tenor.com/view/diy-science-hack-ice-water-gif-3448836

NC→SC phase transition from by very strong **RF** field is an open field of research: RF frequency vs relaxation time \rightarrow Crucial for ultimate gradient of ILC cavities

Outline

- How to measure Higgs boson precisely? (10 min)
	- High luminosity with high energy
	- Solutions: circular vs linear
- High luminosity (10 min)
	- Nano beam technology
- High energy (10 min)
	- Superconducting Radio Frequency technology
- Conclusion

Conclusion

- It is not easy to learn accelerator physics
	- A lot of technical details are all crucially important to realize the machines
	- Basic concepts over broad area of physics
- The goals of ILC require high luminosity and high energy
	- Linear accelerator can avoid synchrotron radiation
- Nano-beam is the key concept for high luminosity
	- Reduce emittance (entropy) via radiation damping
	- Lorentz boost & focusing magnets
- Superconducting cavities offer open research field
	- Nonrelativistic $U(1)_{\text{EM}}$ composite Higgs boson and its thermal excitation
	- The thermal excitation causes finite loss against RF
	- RF magnetic fields do not penetrate superconducting surfaces easily
	- Phase transition and its improvement is still an open question and of crucial importance for ILC

Job opportunities in Europe

- CALO5D (French-German collaboration of imaging
	- Two year post-doc at IJCLab (Orsay, South of Paris)
	- Three year post-doc and two year post- doc at LLR (Pala
	- Contacting:
		- Roman Pöschl (roman.poeschl@ijclab.in2p3.fr)
		- Vincent Boudry (boudry@llr.in2p3.fr)
- Superconducting accelerator technology (magnets)
	- Two year post-doc at Uppsala University (North of Stocl
	- Application: https://www.jobb.uu.se/details/?positionI
- Superconducting cavity engineering (cavities) in Sw
	- Permanent research engineer at Uppsala University
	- Application: https://uu.varbi.com/en/what:job/jobID:73

backup

Accelerating cavities

Superconducting niobium cavities (TESLA) Mormal conducting copper cavities

PHY REV ST - ACCEL BEAMS, **3**, 092001 (2000) PHY REV ACCEL BEAMS 20, 042004 (2017)

 $>\times 2$

Courtesy: Walter Wuensch

Superconducting vs normal conducting Aperture

Superconducting cavities can keep high gradient at low frequency \rightarrow large aperture (ILC: ϕ 70 mm)

Pulse length and duty cycle

Normal conducting cavities are efficient at high frequency \rightarrow small aperture (CLIC X-band: around ϕ 3 mm)

Cooling efficiency < Carnot cycle

 $\beta =$ Q_L W_R = Q_L $Q_H - Q_L$ $\stackrel{v}{=}$ \overline{T} $T_0 - T$ Carnot's theorem

Required power

$$
P_{cryo} > W_R = \frac{P_c}{\beta}
$$

(typically 5 kW/W @ 2 K for AC plug)

SC cavities

NC cavities

 $P_c = 100$ W (CW) Duty cycle 10^{-2} $T = 2 K$

 $P_c = 10$ MW (CW) Duty cycle 10^{-5}

Water cooling

 P_{NET} ~100 W×1% ×150 = 150 W

 P_{NET} ~10 MW×10⁻⁵ ×1 = 100 W

 \rightarrow Short pulsed NC cavities and long pulsed SC cavities are similar in power consumption²

Cooling efficiency < Carnot cycle

 \rightarrow Short pulsed NC cavities and long pulsed SC cavities are similar in power consumption³

Higher/lower gradient by low-T / 2-step baking

Inhomogeneity of disorder anisotropy of Fermi surface seem like key \rightarrow New data and models (classical and quantum phenomenology)

Table 2. Technical risk registry of accelerator components and systems for future e^+e^- and ep colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

Table 7. R&D time frame scoring chart.

Table 8. ILC Higgs Factory scoring example.

https://arxiv.org/abs/2208.06030

State-of-the-art

Superconducting cavities: matured Nitrogen cooled copper cavities

EuXFEL in operation @ DESY

© Heiner Müller-Elsner / European XFEL 2016

LCLS-II in construction @ LCLS-II

Other SRF linear accelerators (not collider) have been operated and/or constructed (SNS, ESS, MYRRAH, PIP-II, SHINE, CiADS, …)

https://fr.futuroprossimo.it/2023/09/lcls-ii-acceso-il-laser-a-raggi-x-piu-potente-del-mondo/

A. D. Cahill et al Phys. Rev. Accel. Beams **21**, 102002

Electrodynamics is not simply cause and effect

field (t=0.end(0.02)) [pb]	\otimes
Component	Abs
ample	1/223
ime	0 ns
hros section	A
lutplane at Y	0.000 mm
Maximum on Plane (Sample)	0 V/m
Maximum (Global)	722411 V/m

$$
\nabla \cdot \mathbf{E} = \rho(t, r)
$$

$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$

$$
\nabla \cdot \mathbf{B} = 0
$$

$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{J}(t, r) + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}
$$

Trajectory of charged particles

- \rightarrow Induce RF fields of *multiple* modes
- Influence to accelerating mode (beam loading)
	- \rightarrow Compensation with amplifier
- Influence to other modes
	- \rightarrow kick following bunches
	- \rightarrow Needs to be damped (Higher Order Mode damper)

 \rightarrow SRF cavities' Large aperture helps