
Bringing Keras into basf2 with Frugally Deep

Stefan Wallner
(swallner@mpp.mpg.de)

Max Planck Institute for Physics

Machine Learning: Python <-> C++ infrastructure
May 15, 2024

The Project:
Particle Identification at Belle II

S. Wallner Bringing Keras into basf2 with Frugally Deep 0 / 15

The Project: Particle Identification at Belle II

I In general six particle species hypotheses considered
I e, µ, π, K , p, d

I Information from six subdetectors used for PID
I SVD, CDC, TOP, ARICH, ECL, KLM
I Different subdetectors cover different kinematic

regions

I For each hypothesis h a likelihood is calculated from
the information of each subdetector D
I 36 likelihoods LD(h)

SVD
CDC

TOP

ECL

KLM

ARICH

S. Wallner Bringing Keras into basf2 with Frugally Deep 1 / 15

The Project: Particle Identification at Belle II
Standard Approach for Particle Identification

Pure-likelihood approach

L(h) =
∏
D

LD(h)

Limitations

I Likelihoods LD(h) require modeling

I Correlations among LD(h) not taken into account

S. Wallner Bringing Keras into basf2 with Frugally Deep 2 / 15

The Project: Particle Identification at Belle II
Neural-Network based Particle Identification

Our approach

I Combine high-level information:
I LD(h)
I Track momentum: |~p|, cos θ, φ
I Track charge

I using a neural network to predict a classification
variable for the considered hypotheses

I Focus on K/π separation

å Network predicts only the probabilities of the K
and π hypotheses

I “Simple” Multilayer Perceptron with PReLU/Softmax
activation function

x1

x2

x40

h1

h2

h3

h127

h128

h1

h2

h3

h127

h128

y1

y2...
...

...

S. Wallner Bringing Keras into basf2 with Frugally Deep 3 / 15

The Application:
Bringing the Network to Analysts

S. Wallner Bringing Keras into basf2 with Frugally Deep 3 / 15

The Application: Bringing the Network to Analysts

Training

I Training samples can be loaded in Python

I Building and training the network in Python using Keras

Application

I Raw data reconstruction, access to data for analysts, high-level reconstruction, fitting, ...
provided by basf2 analysis framework
I Documentation and source code publicly available [Comput.Softw.Big Sci. 3 (2019) 1]
I Written in C++ with a Python frontend heavily used in analysis

å Requires to evaluate the network from C++ code

Implementation

I Use frugally deep library to evaluate trained networks from C++

S. Wallner Bringing Keras into basf2 with Frugally Deep 4 / 15

https://software.belle2.org
https://github.com/belle2/basf2
https://arxiv.org/abs/1809.04299
https://github.com/Dobiasd/frugally-deep

The Application: Bringing the Network to Analysts

Training

I Training samples can be loaded in Python

I Building and training the network in Python using Keras

Application

I Raw data reconstruction, access to data for analysts, high-level reconstruction, fitting, ...
provided by basf2 analysis framework
I Documentation and source code publicly available [Comput.Softw.Big Sci. 3 (2019) 1]
I Written in C++ with a Python frontend heavily used in analysis

å Requires to evaluate the network from C++ code

Implementation

I Use frugally deep library to evaluate trained networks from C++

S. Wallner Bringing Keras into basf2 with Frugally Deep 4 / 15

https://software.belle2.org
https://github.com/belle2/basf2
https://arxiv.org/abs/1809.04299
https://github.com/Dobiasd/frugally-deep

The Application: Bringing the Network to Analysts

Training

I Training samples can be loaded in Python

I Building and training the network in Python using Keras

Application

I Raw data reconstruction, access to data for analysts, high-level reconstruction, fitting, ...
provided by basf2 analysis framework
I Documentation and source code publicly available [Comput.Softw.Big Sci. 3 (2019) 1]
I Written in C++ with a Python frontend heavily used in analysis

å Requires to evaluate the network from C++ code

Implementation

I Use frugally deep library to evaluate trained networks from C++

S. Wallner Bringing Keras into basf2 with Frugally Deep 4 / 15

https://software.belle2.org
https://github.com/belle2/basf2
https://arxiv.org/abs/1809.04299
https://github.com/Dobiasd/frugally-deep

Frugally Deep and Basf2

S. Wallner Bringing Keras into basf2 with Frugally Deep 4 / 15

Frugally Deep and Basf2

Frugally Deep

I Open source (MIT license) C++ library developed mainly by Tobias Hermann

I Allows to evaluate (predict) trained Keras/Tensorflow models in C++

I Small header-only library written in modern and pure C++

I Very easy to integrate and use

I Much smaller binary size than linking against TensorFlow

I Active development
I Currently recommends Tensorflow 2.16.1
I We use it with Tensorflow 2.13

I Depends on FunctionalPlus (Tobias Hermann), Eigen, and json header-only libraries

S. Wallner Bringing Keras into basf2 with Frugally Deep 5 / 15

https://github.com/Dobiasd/frugally-deep

Frugally Deep and Basf2

Supported Layer Types

I Supports a large set of layer types, but not all keras layer types (see github)
I Dense, Flatten, BatchNormalization, ...
I ReLU, PReLU, Sigmoid, Softmax, ...
I Conv1D/2D, MaxPooling1D/2D/3D, AveragePooling1D/2D/3D, ...
I Add, Concatenate, Reshape...
I Attention, ...

I Interface for prediction from
I Sequential models
I Complex computational graphs created with functional API

I Also supports
I Multiple inputs and outputs, residual connections, nested models, custom layers, ...

S. Wallner Bringing Keras into basf2 with Frugally Deep 6 / 15

https://github.com/Dobiasd/frugally-deep#supported-layer-types

Frugally Deep and Basf2

Supported Layer Types

I Supports a large set of layer types, but not all keras layer types (see github)
I Dense, Flatten, BatchNormalization, ...
I ReLU, PReLU, Sigmoid, Softmax, ...
I Conv1D/2D, MaxPooling1D/2D/3D, AveragePooling1D/2D/3D, ...
I Add, Concatenate, Reshape...
I Attention, ...

I Interface for prediction from
I Sequential models
I Complex computational graphs created with functional API

I Also supports
I Multiple inputs and outputs, residual connections, nested models, custom layers, ...

S. Wallner Bringing Keras into basf2 with Frugally Deep 6 / 15

https://github.com/Dobiasd/frugally-deep#supported-layer-types

Frugally Deep and Basf2

Limitations

I Some layer types not supported (see github)
I Conv3D, Conv2DTranspose, RNN, ...

I No GPU support

I Only single core per prediction
I Multiple predictions can run in parallel

S. Wallner Bringing Keras into basf2 with Frugally Deep 7 / 15

https://github.com/Dobiasd/frugally-deep#currently-not-supported-are-the-following

Frugally Deep and Basf2

Limitations

I Some layer types not supported (see github)
I Conv3D, Conv2DTranspose, RNN, ...

I No GPU support

I Only single core per prediction
I Multiple predictions can run in parallel

S. Wallner Bringing Keras into basf2 with Frugally Deep 7 / 15

https://github.com/Dobiasd/frugally-deep#currently-not-supported-are-the-following

Frugally Deep and Basf2

Bring your network into C++ code in 3 steps (see github)

1 Prepare your Keras network
I Build and train the network
I Save it to a single file .keras file with model.save

2 Convert keras network to frugally deep json format
I Using frugally deep Python converter script

3 Load and evaluate your network in C++

S. Wallner Bringing Keras into basf2 with Frugally Deep 8 / 15

https://github.com/Dobiasd/frugally-deep?tab=readme-ov-file#usage

Frugally Deep and Basf2

Load the network in C++ [Code]

I Include C++ frugally deep header
#include <fdeep/fdeep.hpp>

I Load the network from the json file
const auto model = fdeep::load_model("fdeep_model.json");

I In basf2, “calibrations” are stored in a central data base

å Need to load network from json string stored in data base, not from json file
å Possible in frugally deep

const auto model = fdeep::read_model_from_string(model_json_string);

S. Wallner Bringing Keras into basf2 with Frugally Deep 9 / 15

https://github.com/belle2/basf2/blob/e296674ab654a77ccc3404d87cd597fecebd664f/analysis/utility/src/PIDNeuralNetwork.cc#L25

Frugally Deep and Basf2

Load the network in C++ [Code]

I Include C++ frugally deep header
#include <fdeep/fdeep.hpp>

I Load the network from the json file
const auto model = fdeep::load_model("fdeep_model.json");

I In basf2, “calibrations” are stored in a central data base

å Need to load network from json string stored in data base, not from json file
å Possible in frugally deep

const auto model = fdeep::read_model_from_string(model_json_string);

S. Wallner Bringing Keras into basf2 with Frugally Deep 9 / 15

https://github.com/belle2/basf2/blob/e296674ab654a77ccc3404d87cd597fecebd664f/analysis/utility/src/PIDNeuralNetwork.cc#L25

Frugally Deep and Basf2

Prepare input [Code]

I Frugally deep model requires frugally deep tensor as input

I Can be created from a std::vector<float> input

const auto inputFdeep = fdeep::tensor(fdeep::tensor_shape(input.size()), input);

I You can use double instead of float precision by defining
#define FDEEP_FLOAT_TYPE double

before including frugally deep

S. Wallner Bringing Keras into basf2 with Frugally Deep 10 / 15

https://github.com/belle2/basf2/blob/e296674ab654a77ccc3404d87cd597fecebd664f/analysis/utility/src/PIDNeuralNetwork.cc#L65

Frugally Deep and Basf2

Prepare input [Code]

I Frugally deep model requires frugally deep tensor as input

I Can be created from a std::vector<float> input

const auto inputFdeep = fdeep::tensor(fdeep::tensor_shape(input.size()), input);

I You can use double instead of float precision by defining
#define FDEEP_FLOAT_TYPE double

before including frugally deep

S. Wallner Bringing Keras into basf2 with Frugally Deep 10 / 15

https://github.com/belle2/basf2/blob/e296674ab654a77ccc3404d87cd597fecebd664f/analysis/utility/src/PIDNeuralNetwork.cc#L65

Frugally Deep and Basf2

Evaluate the network [Code]

I Evaluate the network
const auto result = m_model->predict({inputFdeep});

I and obtain the results
probabilities[pdgCode] = result.front().get(fdeep::tensor_pos(outputIndex));

S. Wallner Bringing Keras into basf2 with Frugally Deep 11 / 15

https://github.com/belle2/basf2/blob/e296674ab654a77ccc3404d87cd597fecebd664f/analysis/utility/src/PIDNeuralNetwork.cc#L66-L72

Interlude: Pytorch

I First implementation of the neural network was in PyTorch

I Needed to convert PyTorch model to keras to use in with furgally deep

I Could not find a single working PyTorch → keras converter

å Converted the network by hand to keras

S. Wallner Bringing Keras into basf2 with Frugally Deep 12 / 15

Validation and Performance

S. Wallner Bringing Keras into basf2 with Frugally Deep 12 / 15

Validation and Performance

Testing

I Frugally deep verifies that the C++ network works
the same as the Python network by running tests
when loading a model (can be switched off)

I Comparison of network output in Python and C++
implementation yielded consistent results

S. Wallner Bringing Keras into basf2 with Frugally Deep 13 / 15

Validation and Performance

Testing

I Frugally deep verifies that the C++ network works
the same as the Python network by running tests
when loading a model (can be switched off)

I Comparison of network output in Python and C++
implementation yielded consistent results

S. Wallner Bringing Keras into basf2 with Frugally Deep 13 / 15

0 < PNN(K) < 1 is neural network output

Validation and Performance

Performance

I No detailed performance studies performed

I Measured the increase in execution time per track evaluation in basf2
I This includes the network evaluation, but also input gathering, input pre processing, ...
I For three different network sizes

I Finally used medium-sized network was sufficiently fast evaluated

Small Medium Large

Node per hidden layer 64 128 640
Parameters 7k 20k 400k
Execution time 0.07 ms/call 0.07 ms/call 0.20 ms/call
Increase of total execution time1 / 7 % / 7 % / 17 %

S. Wallner Bringing Keras into basf2 with Frugally Deep 14 / 15

1 Compared to execution time of minimal analysis script. Relative increase in total execution time for full-scale analysis scripts is even smaller.

Conclusion

Frugally deep

I Very easy to use header-only library to evaluate keras models in C++

I Small coding overhead ⇒ fast implementation

I Supports basic layer types from keras and also some advanced types
I However, not all keras layer types supported

I Evaluation sufficiently fast for our requirements
I No GPU or multi-threading support
I No detailed performance studies performed

I Used for two projects (PIDNN, BelleNbarMVAModule) in basf2

å From our applications, frugally deep is very well suited for “small” and simple networks
(might also be well suited for large and complex networks)

S. Wallner Bringing Keras into basf2 with Frugally Deep 15 / 15

Backup

S. Wallner Bringing Keras into basf2 with Frugally Deep 1 / 2

Outline

S. Wallner Bringing Keras into basf2 with Frugally Deep 2 / 2

	The Project: Particle Identification at Belle II
	Standard Approach for Particle Identification
	Neural-Network based Particle Identification

	The Application: Bringing the Network to Analysts
	Frugally Deep and Basf2
	Interlude: Pytorch
	Validation and Performance
	Conclusion
	Appendix

