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The Project: Particle Identification at Belle II

I In general six particle species hypotheses considered
I e, µ, π, K , p, d

I Information from six subdetectors used for PID
I SVD, CDC, TOP, ARICH, ECL, KLM
I Different subdetectors cover different kinematic

regions

I For each hypothesis h a likelihood is calculated from
the information of each subdetector D
I 36 likelihoods LD(h)
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The Project: Particle Identification at Belle II
Standard Approach for Particle Identification

Pure-likelihood approach

L(h) =
∏
D

LD(h)

Limitations

I Likelihoods LD(h) require modeling

I Correlations among LD(h) not taken into account
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The Project: Particle Identification at Belle II
Neural-Network based Particle Identification

Our approach

I Combine high-level information:
I LD(h)
I Track momentum: |~p|, cos θ, φ
I Track charge

I using a neural network to predict a classification
variable for the considered hypotheses

I Focus on K/π separation

å Network predicts only the probabilities of the K
and π hypotheses

I “Simple” Multilayer Perceptron with PReLU/Softmax
activation function
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The Application:
Bringing the Network to Analysts
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The Application: Bringing the Network to Analysts

Training

I Training samples can be loaded in Python

I Building and training the network in Python using Keras

Application

I Raw data reconstruction, access to data for analysts, high-level reconstruction, fitting, ...
provided by basf2 analysis framework
I Documentation and source code publicly available [Comput.Softw.Big Sci. 3 (2019) 1]
I Written in C++ with a Python frontend heavily used in analysis

å Requires to evaluate the network from C++ code

Implementation

I Use frugally deep library to evaluate trained networks from C++
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Frugally Deep and Basf2
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Frugally Deep and Basf2

Frugally Deep

I Open source (MIT license) C++ library developed mainly by Tobias Hermann

I Allows to evaluate (predict) trained Keras/Tensorflow models in C++

I Small header-only library written in modern and pure C++

I Very easy to integrate and use

I Much smaller binary size than linking against TensorFlow

I Active development
I Currently recommends Tensorflow 2.16.1
I We use it with Tensorflow 2.13

I Depends on FunctionalPlus (Tobias Hermann), Eigen, and json header-only libraries
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Frugally Deep and Basf2

Supported Layer Types

I Supports a large set of layer types, but not all keras layer types (see github)
I Dense, Flatten, BatchNormalization, ...
I ReLU, PReLU, Sigmoid, Softmax, ...
I Conv1D/2D, MaxPooling1D/2D/3D, AveragePooling1D/2D/3D, ...
I Add, Concatenate, Reshape...
I Attention, ...

I Interface for prediction from
I Sequential models
I Complex computational graphs created with functional API

I Also supports
I Multiple inputs and outputs, residual connections, nested models, custom layers, ...
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Frugally Deep and Basf2

Limitations

I Some layer types not supported (see github)
I Conv3D, Conv2DTranspose, RNN, ...

I No GPU support

I Only single core per prediction
I Multiple predictions can run in parallel
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Frugally Deep and Basf2

Bring your network into C++ code in 3 steps (see github)

1 Prepare your Keras network
I Build and train the network
I Save it to a single file .keras file with model.save

2 Convert keras network to frugally deep json format
I Using frugally deep Python converter script

3 Load and evaluate your network in C++
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Frugally Deep and Basf2

Load the network in C++ [Code]

I Include C++ frugally deep header
#include <fdeep/fdeep.hpp>

I Load the network from the json file
const auto model = fdeep::load_model("fdeep_model.json");

I In basf2, “calibrations” are stored in a central data base

å Need to load network from json string stored in data base, not from json file
å Possible in frugally deep

const auto model = fdeep::read_model_from_string(model_json_string);
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Frugally Deep and Basf2

Prepare input [Code]

I Frugally deep model requires frugally deep tensor as input

I Can be created from a std::vector<float> input

const auto inputFdeep = fdeep::tensor(fdeep::tensor_shape(input.size()), input);

I You can use double instead of float precision by defining
#define FDEEP_FLOAT_TYPE double

before including frugally deep
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Frugally Deep and Basf2

Evaluate the network [Code]

I Evaluate the network
const auto result = m_model->predict({inputFdeep});

I and obtain the results
probabilities[pdgCode] = result.front().get(fdeep::tensor_pos(outputIndex));
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Interlude: Pytorch

I First implementation of the neural network was in PyTorch

I Needed to convert PyTorch model to keras to use in with furgally deep

I Could not find a single working PyTorch → keras converter

å Converted the network by hand to keras

S. Wallner Bringing Keras into basf2 with Frugally Deep 12 / 15



Validation and Performance
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Validation and Performance

Testing

I Frugally deep verifies that the C++ network works
the same as the Python network by running tests
when loading a model (can be switched off)

I Comparison of network output in Python and C++
implementation yielded consistent results
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Validation and Performance

Performance

I No detailed performance studies performed

I Measured the increase in execution time per track evaluation in basf2
I This includes the network evaluation, but also input gathering, input pre processing, ...
I For three different network sizes

I Finally used medium-sized network was sufficiently fast evaluated

Small Medium Large

Node per hidden layer 64 128 640
Parameters 7k 20k 400k
Execution time 0.07 ms/call 0.07 ms/call 0.20 ms/call
Increase of total execution time1 / 7 % / 7 % / 17 %
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1 Compared to execution time of minimal analysis script. Relative increase in total execution time for full-scale analysis scripts is even smaller.



Conclusion

Frugally deep

I Very easy to use header-only library to evaluate keras models in C++

I Small coding overhead ⇒ fast implementation

I Supports basic layer types from keras and also some advanced types
I However, not all keras layer types supported

I Evaluation sufficiently fast for our requirements
I No GPU or multi-threading support
I No detailed performance studies performed

I Used for two projects (PIDNN, BelleNbarMVAModule) in basf2

å From our applications, frugally deep is very well suited for “small” and simple networks
(might also be well suited for large and complex networks)
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Backup
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Outline

S. Wallner Bringing Keras into basf2 with Frugally Deep 2 / 2


	The Project: Particle Identification at Belle II
	Standard Approach for Particle Identification
	Neural-Network based Particle Identification

	The Application: Bringing the Network to Analysts
	Frugally Deep and Basf2
	Interlude: Pytorch
	Validation and Performance
	Conclusion
	Appendix

