ML inference in Future Collider Software

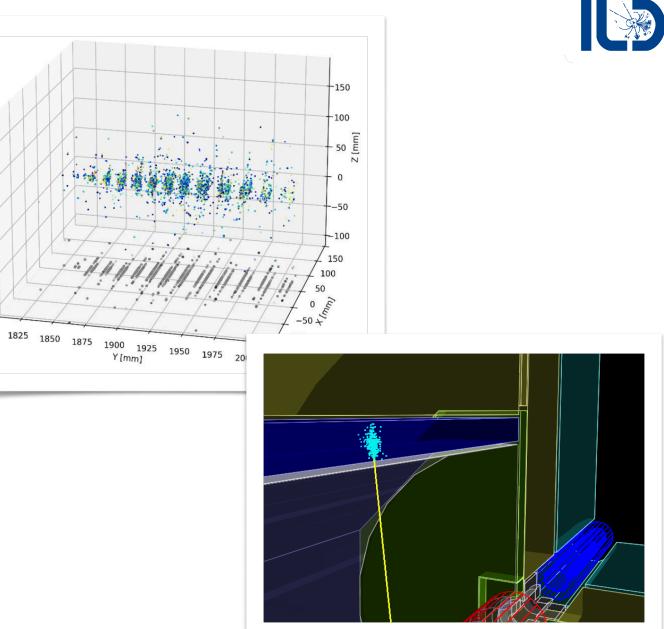
IDT-WG3 topical meeting on running tools for ML inference

15.05.24

Frank Gaede, DESY

Outline

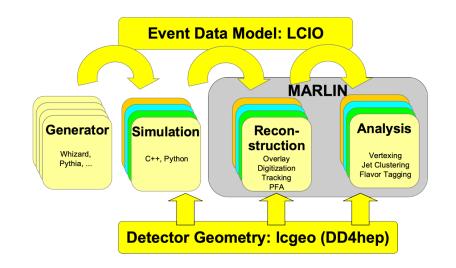
- Introduction •
- Generative ML for Simulation ٠
- ML inference for Reconstruction •
- **Future Developments** ٠
- Summary and Outlook ٠

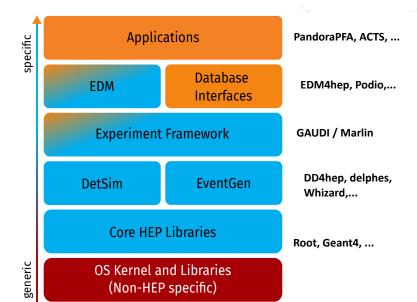


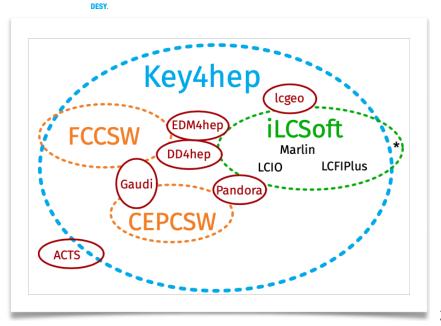
Introduction

turnkey software stack for all future colliders

- HEP community decided to develop a **common turnkey software stack** for future collider studies: Key4hep
- supported by HSF and CERN EP-R&D and AIDAinnova
- involved communities/contributors:
 - CEPC, CLIC, FCC, EIC, ILC, LUXE, Muon Collider ...
- all future collider ML inference tools should be developed in Key4hep
 - or iLCSoft as transition for linear collider still ongoing



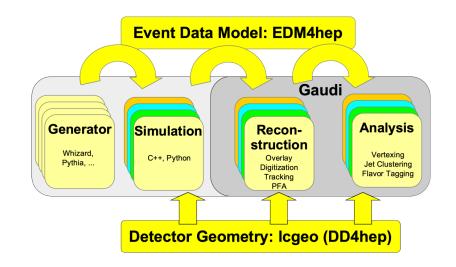


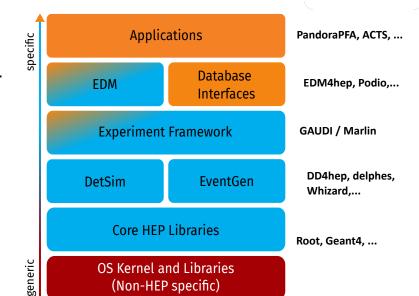


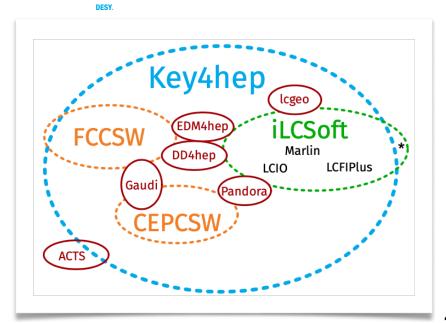
Introduction

turnkey software stack for all future colliders

- HEP community decided to develop a **common turnkey software stack** for future collider studies: Key4hep
- supported by HSF and CERN EP-R&D and AIDAinnova
- involved communities/contributors:
 - CEPC, CLIC, FCC, EIC, ILC, LUXE, Muon Collider ...
- all future collider ML inference tools should be developed in Key4hep
 - or iLCSoft as transition for linear collider still ongoing







Introduction

modern (generative) machine learning

- modern machine learning development is almost exclusively done in the Python world using the PyTorch toolkit and to a much lesser extend TensorFlow/KERAS
 - in HEP traditionally also ROOT-TMVA used (for more classic approaches)
- mostly using **HDF5** file format for training, test and validation data
- to run such new models in standard HEP frameworks such as Key4hep/iLCSoft some suitable glue code or middleware is needed -> this talk
- in particular we need C++ inference tools to call the ML model during sim/rec/ana in framework
 - here we focus on
 - **ONNX** Open Neural Network Exchange (<u>https://onnx.ai/</u>)
 - **libtorch** (<u>https://pytorch.org/cppdocs/</u>)

Existing ML inference tools

in Key4hep - iLCSoft and (briefly) covered today

generative ML in simulation:

- **DDFastShowerML** (DDML)
 - generative ML architectures for fast shower simulation

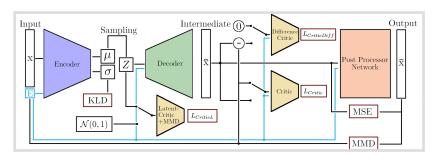
running inference for (high level) reconstruction:

- CPID
 - comprehensive particle identification for future colliders
- MarlinML (FlavourTaggingML)
 - machine learning flavour tagging for future higgs factories

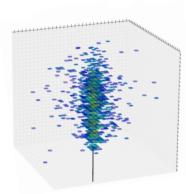
Fast shower simulation

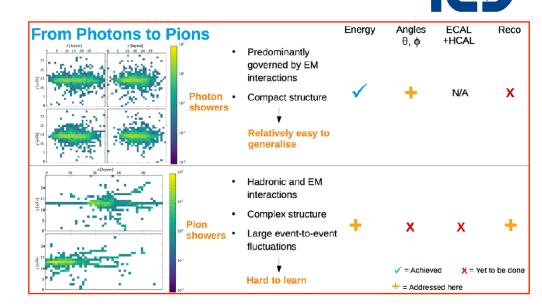
with generative ML

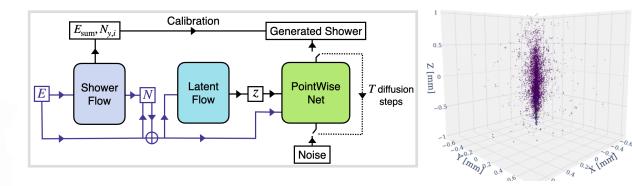
- shower generation with ML offers great potential O(10e3) for faster and more sustainable simulation in HEP
- studying many generative models: (W)GANs, VAE, BIB-AEs, Normalising Flows, Point Cloud Diffusion Models,...
- working on fixed, regular 3d grids or with point clouds of energy depositions
- context of highly granular calorimeters for future colliders ideal context to study this
- and develop a **dedicated common tool** for this...



DESY. Frank Gaede, IDT-WG3 topical meeting ML inference , 15.05.24



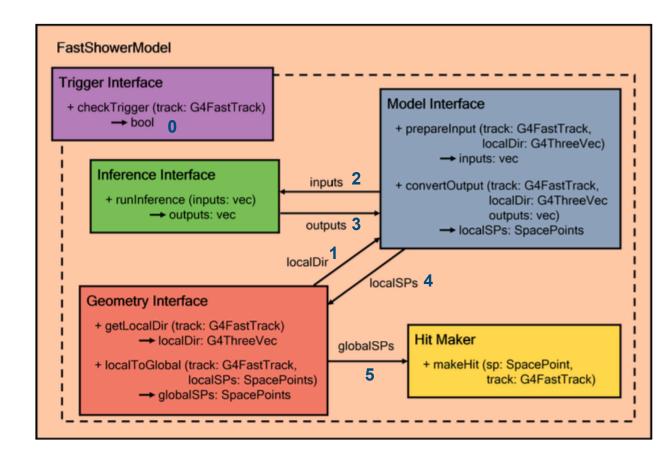




DDFastShowerML

fast simulation with ML inference in DD4hep

- based on FastSim hooks implemented in Geant4/ DDG4
- split different necessary steps into dedicated components that can be partly reused:
 - Trigger: decide for w/ particles to use ML
 - **Model**: prepare input and output
 - typical for model specific
 - Inference: generic inference w/ ONNX and libtorch
 - common for all models
 - Geometry: local to global conversions of cell
 positions
 - barrel and endcap w/ some reuse between models (uses *ddrec::LayeredCalorimeter*)

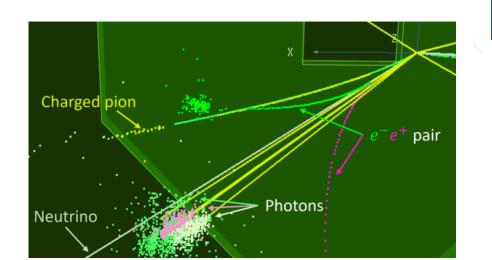


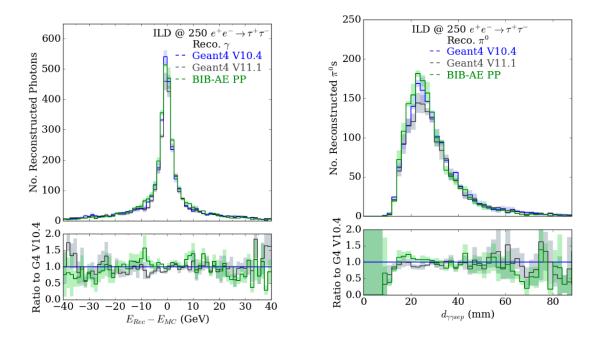
https://gitlab.desy.de/ilcsoft/ddfastshowerml

DDFastShowerML

example usage: tau-pair events in ILD

- with DDFastShowerML can include generative ML in **standard full simulation** to replace part of the showers with generative fast sim
- prerequisites:
 - need to be able to create ONNX or torch binary files:
 - typically have the whole ML network architecture running in one large PyTorch script
 - have a DD4hep detector model (with DDRec extensions)
- example: e+e- -> tau+ tau- -> XXX + pi0 -> gamma gamma at 250 GeV in ILD using a BIB-AE model conditioned on two angles





taus decaying in ILD detector w/ ML photons (PhD theses Peter McKeown)

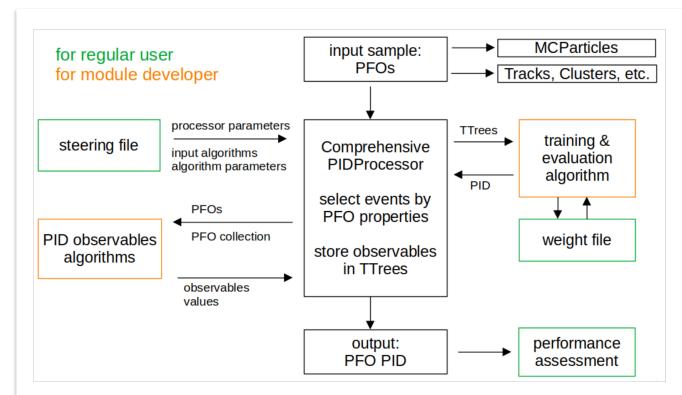
Particle ID with ML

• implemented in LCIO and Marlin

• see: <u>MarlinReco/Analysis/PIDTools</u>

CPID: Comprehensive Particle identification Framework for Future Colliders

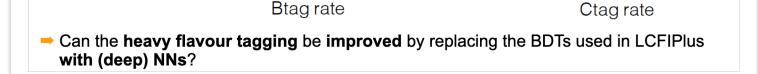
- using **ROOT::TTree** as data exchange format
 - provides direct interface to ROOT-TMVA
 - easy conversion to HDF5 (if needed)
- current implementation uses TMVA only
- could maybe extended to use libtorch/ONNX ...



U.Einhaus

LCFIPlus flavour tagging workhorse for ILC studies for ~20 years

- recent progress in deep ML applied to LHC suggests significant performance increases possible
- study application of CMS DeepJet and ParticleNet to ILD (in iLCSoft)



Background rate

 10^{-3}

10

0

current standard for heavy flavour tagging at ILD: LCFIPlus

6q,√s=500Ge\

uds bkg. IDR-L

🕂 uds bkg. IDR-S

0.8

0.6

based on TMVA (BDTs)

ILD

🕂 c bkg. IDR-L

· → c bkg. IDR-S

0.2

0.4

LCFIPIus arXiv:2003.01116

Background rate

 10^{-3}

10-

Ο

ILD

∔ b bkg. IDR-L

🗧 🕂 b bkg. IDR-S

0.2

0.4

arXiv:1506.08371,

6ġ,√s=500ĠeV

LCFIPIus

arXiv:2003.01116

0.6

+ uds bkg. IDR-L

∔uds bkg. IDR-S

0.8

https://github.com/lcfiplus/LCFIPlus

Flavour Tagging With Deep Neural Networks

Flavour Tagging

With Deep Neural Networks

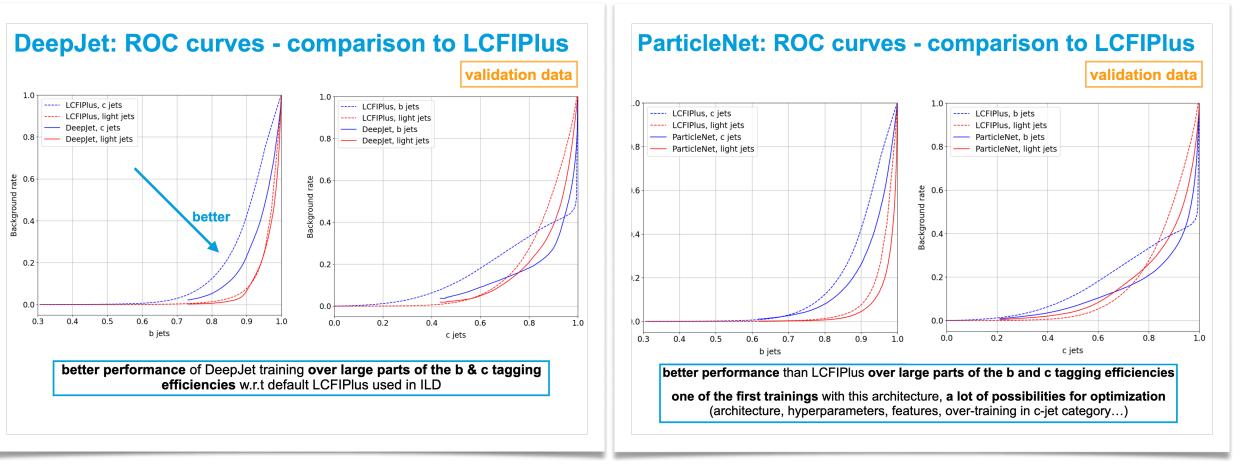
ParticleNet: input features **DeepJet: input features** secondary vertices: coordinates iet constituents: coordinates global variables charged jet constituents Δη, ΔΦ Δn. ΔΦ p^{track}/p^{jet} p_T^{track} (rel. jet), $\overrightarrow{p}^{\text{track}} \cdot \overrightarrow{p}^{\text{jet}}/p^{\text{jet}}$ pjet prjet secondary vertices: features Ncharged jet const., Nneutral jet const., NSV ΔR(track, jet) jet constituents: features Δη, ΔΦ additional global variables from LCFIPlus impact parameter & significances Δη, ΔΦ track reconstructed in PV? $log(p_T)$, log(E), $log(p_T/p_T^{jet})$, $log(E/E^{jet})$, log(p_T), E_{SV}/E_{jet}, E_{SV} $\overrightarrow{p}^{\text{track}} \cdot \overrightarrow{p}^{\text{jet}} / p^{\text{jet}}$ lepton related variables ŋ pid variables ΔR msv **19 input features** 21 input features x2/ndf Ntracks in SV neutral jet constituents secondary vertices isElectron, isMuon, isChargedHadron, χ2/ndf isNeutralHadron, isPhoton pneutral const., pneutral const./pjet msv impact parameters & significances impact parameter & significances ΔR (jet, neutral const.) Ntracks in SV $\cos(\text{flight direction}_{SV}, \overrightarrow{p}_{SV})$ track used in PV? is photon? ΔR(SV, jet) lepton related variables **14 input features** Esv/Ejet, Esv EHCAL/EHCAL+ECAL pid variables $\cos(\text{flight direction}_{SV}, \overrightarrow{p}_{SV})$ EHCAL/EHCAL+ECAL 2 SVs & all jet constituents 3D IP and significance considered, no ordering of inputs χ2/ndf **28 input features** χ2, ndf **5 input features** 10 input features

- dedicated Marlin processor to prepare input variables from event (jet constituents):
 - VariablesForDeepMLFlavorTagger
- writes ROOT::Three file for training and assigns parameters (as PIDParameters) to PFOs for inference

Flavour Tagging

With Deep Neural Networks

both deep deep learning methods achieve better performance than LCFIPlus



M.Meyer

Flavour Tagging

M.Meyer

With Deep Neural Networks - Packages and Modules



- all packages available at <u>https://gitlab.desy.de/ilcsoft</u>
- serve as prototype example implementation and could be used in ILD standard reconstruction
- currently no manpower to continue working on this ...

Future Developments

and related open questions

- MarlinML with the JetTagger examples is still somewhat work in progress
 - however, serves as demonstrator and prototype for how ML inference can be done in Marlin for reconstruction and analysis
- need to also include other ongoing ML activities in Marlin, e.g.:
 - Particle Transformer flavour tagging and PFA w/ DNN (see <u>talk T. Suehara 2nd ECFA H.EW ws</u>)
- Open Questions:
 - can some code be reused as in DDML?
 - generic ML inference (libtorch, ONXX, ...) -> probably straight forward
 - preparation of input variables (training/test/validation/inference data) -> probably quite some work needed to make this generic - maybe better to quickly write dedicated code ?
 - how can this be (re)used in Key4hep with Gaudi and EDM4hep?
 - currently via MarlinWrapper
 - eventually need to create a **k4MLInference** package -> need EDM4hep prod. version

Summary and Outlook

- being able to run ML inference in Key4hep/iLCSoft absolutely mandatory
- some prototypes and example implementations exist:
 - DDFastShowerML, MarlinML (JetTagger), CPID
- work in progress towards:
 - more generic tools how many different applications can be combined in one package ?
 - proper Key4hep examples using EDM4hep and Gaudi
 - manpower limited ...
- your contribution and thoughts are welcome !