
Status of EDM4hep
Towards a first stable release

This project has received funding from the
European Union’s Horizon 2020 Research and
Innovation programme under grant agree-
ment No 101004761.

Thomas Madlener
ILD group meeting

May 07, 2024

The EDM at the core of HEP software

• Different components of experiment software have to talk to each other
• The event data model defines the language for this communication
• Users express their ideas in the same language

May 07, 2024 T.Madlener | ILD group meeting 1

EDM4hep - The common EDM for Key4hep

key4hep/EDM4hep
edm4hep.web.cern.ch

AIDASoft/podio

• Based on LCIO and
FCC-edm

• Focus on usability in
analysis

• Quite stable over the last
two years

• Some breaking changes
recently for v1.0!

• Can easily be extended
• Used by EDM4eic
• Prototyping!

• Generated via podio

May 07, 2024 T.Madlener | ILD group meeting 2

https://github.com/key4hep/EDM4hep
https://edm4hep.web.cern.ch/
https://github.com/AIDASoft/podio

The podio EDM toolkit

• Implementing a performant event data
model (EDM) is non-trivial

• Use podio to generate code starting
from a high level description

• Provide an easy to use interface to the
users

• Main customers and feature drivers
• key4hep/EDM4hep
• eic/EDM4eic

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

May 07, 2024 T.Madlener | ILD group meeting 3

https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic
https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• Layered design allows for efficient memory layout and performant I/O
implementation

May 07, 2024 T.Madlener | ILD group meeting 4

podio supports different I/O backends

• Default ROOT backend
• Effectively flat ntuples (TTree /

RNTuple)
• Files can be interpreted without
EDM library(!)

• Can be used in RDataFrame
(FCCAnalyses) or with uproot

• Also with Julia
• Adding more I/O backends is
possible

• Alternative SIO backend exists
• Working on RDataSource for better
RDataFrame integration

May 07, 2024 T.Madlener | ILD group meeting 5

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

CollectionBuffers

https://github.com/peremato/EDM4hep.jl

Schema evolution

Comparing datamodel versions v2 and v1

Found 3 schema changes:
- 'ex2::NamespaceStruct' has an addded member 'y'
- 'ex2::NamespaceStruct' has a dropped member 'y_old'
- 'ExampleStruct.x' changed type from 'int' to 'double'

Warnings:
- Definition 'ex2::NamespaceStruct' has a potential [...]

ERRORS:
- Forbidden schema change in 'ExampleStruct' for 'x' [...]

• Allow to read old versions of an EDM
from file and convert “on-the-fly”

• Hard problem with many considerations
• Leverage backend if possible
• Allow user defined evolution

• Evolution always directly to current
version

• Detect potential problems at code
generation

• Expand available automatic evolutions
as necessary

• Machinery in place; “whatever ROOT can
do” for now

May 07, 2024 T.Madlener | ILD group meeting 6

Interface types and their use in EDM4hep
Track

gaseous

silicon

interfaces:
edm4hep::TrackerHit:

Types: [edm4hep::TrackerHit3D, edm4hep::TrackerHitPlane]
Members:
- edm4hep::Vector3f position [mm] // hit position

datatypes:
edm4hep::Track:

OneToManyRelations:
- edm4hep::TrackerHit trackerHits // hits of this track

auto track = edm4hep::Track{};
track.addHit(edm4hep::TrackerHit3D{});
track.addHit(edm4hep::TrackerHitPlane{});

const auto hits = track.getHits();
hits[0].isA<edm4hep::TrackerHit3D>(); // <-- true
hits[0].getValue<edm4hep::TrackerHit3D>(); // <-- "cast back"
hits[1].isA<edm4hep::TrackerHit3D>(); // <-- false
hits[1].getValue<edm4hep::TrackerHit3D>(); // <-- exception!

• General interface can be useful to
“gloss over some details”

• Value semantics prevent inheritance
based approach

• Pointers in interfaces break
consistency

• No base class to inherit from
• Introduce interfaces as new
category in YAML definition

• Define desired functionality
• No collections!
• Use like normal datatypes
• “Casting back” is possible

May 07, 2024 T.Madlener | ILD group meeting 7

Consistent mutability concept

• Some inconsistencies inherited from LCIO
• Stricter multithreading concept in EDM4hep

• Things can only be mutated during creation
• Trivial thread safety
• Improved provenance

• Opportunity to “clean up” some things
• Some workflows cannot be directly ported

Event

Tracks

TrackerHits

TrackingProcessor

dEdXProcessor

creates and puts

add dEdX info

edm4hep::RecDqdx:
Description: "dE/dx or dN/dx"
Members:
- edm4hep::Quantity dQdx // value + error

OneToOneRelations:
- edm4hep::Track track // computed from here

May 07, 2024 T.Madlener | ILD group meeting 8

ParticleID handling EDM4hep vs LCIO
• Remove ParticleID relation from Cluster

• Found no usage in ILD / CLIC reconstruction
• Make ParticleID have a one-to-one
relation to ReconstructedParticle

• Also remove particleIDUsed

• ParticleID has been (ab)used in LCIO as
transient parameter (values) store

• Will require change of pattern for EDM4hep

• Simple use cases become simpler with
EDM4hep

• Tooling keeps the rest at the same level
• Some usability isses still to be addressed

• keyhep/EDM4hep#298

LCIO EDM4hep

May 07, 2024 T.Madlener | ILD group meeting 9

key4hep/EDM4hep#268

https://github.com/keyhep/EDM4hep/pull/298
https://github.com/key4hep/EDM4hep/pull/268

ParticleID related utilities

• edm4hep::utils::PIDHandler similar to UTIL::PIDHandler
• Get related ParticleIDs from a ReconstructedParticle
• Retrieve some PID metadata
• Slightly more modern interface for EDM4hep

• Handling of necessary metadata very different
• LCIO: collection parameters - tight coupling
• EDM4hep: file level metadata - looser coupling
• Gory details here and here

• See the documentation for more usage examples
• Feedback very much appreciated!

May 07, 2024 T.Madlener | ILD group meeting 10

https://indico.cern.ch/event/1393283/contributions/5856214/attachments/2816656/4919274/pid_new_edm4hep.pdf
https://indico.cern.ch/event/1409361/contributions/5923741/attachments/2842531/4969118/pidhandler_utils_edm4hep_230424.pdf
https://github.com/key4hep/EDM4hep/blob/main/doc/PIDHandler.md

ParticleID handling comparison

Getting the dE/dx distance wrt an electron for all particles
using namespace EVENT;
using namespace UTIL;

auto recos = event->getCollection("PandoraPFOs");
auto pidHandler = PIDHandler(recos);

const auto dEdxId = pidHandler.getAlgorithmID(_dEdxname);
const auto dEdx_e_Id = pidHandler.getAlgorithmID(dEdxId,

"e_dEdx_dist");

for (int i = 0; i < recos->getNumberOfElements(); ++i) {
auto p = static_cast<ReconstructedParticle*>(

recos->getElementAt(i));

if (p->getCharge() == 0.0) {
continue; // only charged particles have tracks

}

const auto& dEdxParams = pidHandler.getParticleID(p, dEdxId);
const auto dEdx_e_dist = dEdxParams[dEdx_e_Id];

// do something with the particle and the dEdx distance
}

using namespace edm4hep;
using namespace edm4hep::utils;

const auto dEdx = event.get<ParticleIDCollection>("dEdx");

const auto dEdxMeta = PIDHandler::getAlgoInfo(metadata, "dEdx");
const auto dEdx_e_Id = getParamIndex(dEdxMeta, "e_dEdx_dist");

for (const auto pid : dEdx) {

const auto p = pid.getParticle();
const auto dEdx_e_dist = dEdx.getParameters()[dEdx_e_Id];

// do something with the particle and the dEdx distance
}

LCIO EDM4hep
May 07, 2024 T.Madlener | ILD group meeting 11

Summary & Outlook

• EDM4hep is currently undergoing the final developments before v1.0
• podio as generating tool has accomodated the necessary feature requests
• Addressed some conceptual issues inherited from LCIO

• ParticleIDs & handling with largest differences
• First version of corresponding utilities in place

• Transparent migrations and backwards compatibility after v1.0
• Now is the best* time to test and request changes!

• Current version of EDM4hep available via the Key4hep nightlies
/cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

*last chance ;)

May 07, 2024 T.Madlener | ILD group meeting 12

May 07, 2024 T.Madlener | ILD group meeting 0

Supplementary
Material

Schema evolution - Technical details

• Called as early as possible and as
late as necessary

• Earliest point where we have
collection buffers from all
backends is in Frame

• Schema evolution functions
available from SchemaEvolution
singleton

• Populated during shared library
loading

• Schema evolution can be a no-op

Map<string, unique_ptr<CollectionBase>> m_colls;
unique_ptr<FrameDataT> m_frameData;

Frame

in m_colls?

auto buffers = m_frameData->getBuffers(name)

buffers = schemaEvolution(buffers, buffers.version,
 buffers.type);
auto it = m_colls.emplace(name, buffers.create());
return it->second;

return collection;

collection
not present

Frame::get(std::string name)

true

valid buffers

false

no buffers

May 07, 2024 T.Madlener | ILD general meeting 1 (backup)

More recent transparent(-ish) changes

• Stable collection IDs
• Initially: Insertion order into Frame
• Now: Hash of collection name
• 32 bits for transparent migration

• RNTuple based backend
• Storing datamodel definition in
metadata Frame

• Always possible to regenerate
datamodel from datafile

• Retrievable programmatically
• Dumping via podio-dump
• String literal embedded into binary

struct ObjectID {
int index;
uint32_t collectionID;

};

ObjectID

Data

Relations

Vector
Members

Obj

readelf -p .rodata libedm4hep.so | grep options
[368] {"options": {<...>},

"schema_version": 1, "components": {<...>},
"datatypes": {<...>}}

May 07, 2024 T.Madlener | ILD general meeting 2 (backup)

The Frame - A generalized (event) data container

• Type erased container aggregating all
relevant data

• Defines an interval of validity /
category for contained data

• Event, Run, readout frame, ...
• Easy to use and thread safe interface
for data access

• Immutable read access only
• Ownership model reflected in API

• Decouples I/O from operating on the
data

• Old EventStore has been removed!

Frame

Collection

Collection

Collection

Collection

Collection

Collection
co
ns
t&

mutable owned by user

Parameters

std::move

const&

template<typename CollT>
const CollT& get(const std::string& name) const;

template<typename CollT, /*enable_if*/>
const CollT& put(CollT&& collection,

const std::string& name);

May 07, 2024 T.Madlener | ILD general meeting 3 (backup)

	Appendix

