Exploring New Physics in Electron-Laser Collisions at LUXE and with Future e⁺e⁻ Beams

Ivo Schulthess, on behalf of the LUXE collaboration 27th of June 2024 - ILC IDT WG3 Physics Group Meeting Deutsches Elektronen-Synchrotron DESY

Laser Und XFEL Experiment LUXE

Laser Und XFEL Experiment LUXE The Collaboration

ILC IDT WG3 Physics Group Meeting

Laser Und XFEL Experiment LUXE DESY and European XFEL Site

Laser Und XFEL Experiment LUXE Experimental Schematic: Electron-Laser Mode

Laser Und XFEL Experiment LUXE Strong-Field QED Processes

non-linear Compton $e^{\pm} \rightarrow e^{\pm} + \gamma$

Laser Und XFEL Experiment LUXE Strong-Field QED Processes

New Physics at Optical Dump

New Physics at Optical Dump NPOD Beam Dump and Collider Constraints

ILC IDT WG3 Physics Group Meeting

New Physics at Optical Dump NPOD Optical Dump Concept

New Physics at Optical Dump NPOD Production and Decay Mechanisms

New Physics at Optical Dump NPOD Background Estimation

10.1103/PhysRevD.106.115034

New Physics at Optical Dump NPOD Expected Phase-Space Coverage

New Physics at Optical Dump NPOD NPOD Detector Option: LUXE ECAL-E

technology:

- high-granularity SiW calorimeter

configuration:

- three modules, each 18 x 18 cm²
- 15 sandwich layers
- 0.5 mm thick silicon with a 5.5 x 5.5 mm² readout structure
- tungsten absorbers of 7 x 2.8 mm and 8 x 4.2 mm thickness

^{10.48550/}arXiv.2004.12792 10.1016/j.nima.2019.162969

New Physics at Optical Dump NPOD NPOD Detector in DD4HEP Framework

Prospects for Future e⁺e⁻ Beams

Prospects for Future e⁺e⁻ Beams (Future) Linear Colliders

	E _{e⁻}	population	BX separation	train rate
EU.XFEL ^[1]	17 GeV	0.15 x 10 ¹⁰ e⁻/BX	220 ns	10 Hz
ILC ^[2]	125 GeV	2 x 10¹º e⁻/BX	554 ns	5 Hz
C ^{3 [3]}	125 GeV	0.62 x 10 ¹⁰ e⁻/BX	5.26 ns	120 Hz

[1] DOI: 10.1140/epjs/s11734-021-00249-z [2] DOI: 10.48550/arXiv.2203.07622 [3] DOI: 10.48550/arXiv.2203.07646

Prospects for Future e⁺e⁻ Beams Colliders - Effective Luminosities

$$\mathcal{L}_{\text{eff}} = N_e N_{bx} \frac{9\rho X_0}{7Am_0}$$

fixed:

A = atomic mass number ρ = density in [g/cm³] X₀ = radiation length in [cm] m₀ = nucleon mass in [g]

collider dependent:

 N_e = number of electrons per bunch N_{bx} = number of bunch crossings

assumptions:

- 10⁷ s runtime (32% uptime over 1 year)
- laser triggers at train rate (up to 120 Hz)
- tungsten dump

effective luminosities:

- EU.XFEL: 4.3 fb⁻¹
- ILC: 28.5 fb⁻¹
- C³: 212.0 fb⁻¹

Prospects for Future e⁺e⁻ Beams Laser Systems

	power	intensity	intensity (norm)	trigger rate
LUXE phase-0 ^[1]	4 x 10 ¹³ W	2.0 x 10 ¹⁹ W/cm ²	3	1 Hz (10 Hz)
LUXE phase-1 ^[1]	3.5 x 10 ¹⁴ W	1.2 x 10 ²¹ W/cm ²	24	1 Hz (10 Hz)
CoReLS ^[2]	4 x 10 ¹⁵ W	1.1 x 10 ²³ W/cm ²	220	0.1 Hz
Future ^[3,4]	O(10 ¹⁸) W	O(10 ²⁵) W/cm ²	O(2000)	O(100) Hz

[1] DOI: 10.1140/epjs/s11734-021-00249-z

[2] DOI: 10.1364/optica.420520

[3] DOI: 10.1017/hpl.2023.69

[4] DOI: 10.1016/j.optcom.2011.10.089

Prospects for Future e⁺e⁻ Beams Optimal Laser Parameters

simulation parameters:

- $\lambda = 800 \text{ nm}$
- w_o = 2 μm
- $T_{fwhm} = 20 \text{ fs}$
- $\alpha = 17.2^{\circ}$
- polarization = linear

- $\theta \leq 2.5 \text{ mrad}$

Prospects for Future e⁺e⁻ Beams Electron-Laser Interaction - Optical Dump (Ptarmigan)

simulation parameters:

- $\lambda = 800 \text{ nm}$
- $w_0 = 2 \mu m$
- $T_{fwhm} = 20$ fs
- $\alpha = 17.2^{\circ}$
- polarization = linear

Prospects for Future e⁺e⁻ Beams Phase-Space Coverage of Linear Accelerators

ILC IDT WG3 Physics Group Meeting

Prospects for Future e⁺e⁻ Beams Conclusion

- LUXE will allow a precise investigation of strong-field QED
- it allows to search for new physics with the optical dump concept
- the concept may be applicable to future facilities