SMEFT contributions to Higgstrahlung at NLO

S. Dawson, BNL June 27, 2024

Based on: K.Asteriadis, S. Dawson, P. P. Giardino, R. Szafron: 2406.03557, arXiv:2406.xxxxx

New Physics and SMEFT@NLO

• Study deviations from SM in terms of SMEFT expansion

$$L_{SMEFT} = L_{SM} + \sum_{i} \frac{C_i^6}{\Lambda^2} O_i^6 + \sum_{i} \frac{C_i^8}{\Lambda^4} O_i^8 + \dots$$

- Expansions in $1/\Lambda^2$ and in loops $1/(16\pi^2)$
- Compute cross sections consistently to O(1/ Λ^2) and O(1/16 π^2) including all electroweak corrections to NLO
- At NLO, typically gain information about many operators that do not contribute at tree level
- RGE running of dimension-6 operators from Λ to weak scales known, so logarithmic corrections come for free

NLO Electroweak SMEFT

- Broad program of computing Higgs decays at NLO in SMEFT, Z decays at NLO in dimension-6 SMEFT
 - $H \rightarrow \gamma\gamma$, $H \rightarrow \gamma Z$, $H \rightarrow VV$, $H \rightarrow bb$, $Z \rightarrow ff$
- Results can be expressed similarly to (plus tree level EFT if applicable):

$$\begin{aligned} A_{\mu\nu}(H \to \gamma Z) = &\mathcal{A}\left(g_{\mu\nu} - \frac{p^{\nu}q^{\mu}}{p \cdot q}\right) \\ &\mathcal{A} \sim &\frac{a_{sm}}{16\pi^2} + \sum_i \frac{C_i}{\Lambda^2} \left[A_{EFT,i} + \frac{B_{EFT,i}}{16\pi^2} + \frac{C_{EFT,i}}{16\pi^2} \log(\frac{\Lambda^2}{M_Z^2})\right] + \dots \end{aligned}$$

- C_{EFT} can be found from RGE running
- B_{EFT} requires complete NLO calculation
- For $H \rightarrow \gamma \gamma$ and $H \rightarrow \gamma Z$, B_{EFT} and C_{EFT} are of similar numerical size

 $\gamma\gamma: \underline{1807.11504}, \underline{1805.00302} \quad \gamma Z: \underline{1801.01136}, \underline{1903.12046} \quad Z \rightarrow \text{ff}: \underline{1909.02000} \quad H \rightarrow bb: \underline{2007.15238}, \underline{1904.06358}$

NLO Electroweak SMEFT: Constants matter

• Example: $H \rightarrow Z\gamma$

• Λ ~ 1 TeV, constants can give large effects (very dependent on specific values of coefficients)

New Physics and Higgstrahlung

Higgstrahlung in the SMEFT:

- New interactions, plus rescaling of SM couplings
- At tree level, dependence on 7 SMEFT coefficients

 $C_{\phi D}, C_{\phi \Box}, C_{\phi WB}, C_{\phi W}, C_{\phi B}, C_{\phi e}[1,1], C_{\phi l}^{+}[1,1] \equiv C_{\phi l}^{(1)}[1,1] + C_{\phi l}^{3)}[1,1]$

- Enhanced by s/Λ^2 relative to propagator diagrams
- Expect 4-fermion operators to be important at higher energies

S. Dawson, BNL

New Physics and Higgstrahlung

Higgstrahlung at NLO EW SMEFT

- Complete NLO calculation including all dimension-6 operators for polarized e⁻, e⁺
 - (~80 SMEFT operators contribute)
- One-loop virtual + tree level real photon emission
 - Generate with FeynArts \rightarrow FeynCalc \rightarrow Package-X
 - Renormalize on-shell for M_W , M_Z , $\overline{\mathrm{MS}}$ for Wilson Coefficients, $C_i(\mu)$
- Sensitive to poorly constrained interactions that first arise at NLO

$e^+e^- \rightarrow ZH$ is window to many new interactions

- Sensitivity to Higgs tri-linear correlated with other contributions
 - Calculate cross section to $1/\Lambda^2$ so results are linear bands
- How do future constraints compare with existing information?
 - Assume .5% accuracy on total cross section measurement at vs=240 GeV, 1% at vs=365 GeV
- Compare with limits from LEP Z-pole observables and predictions for Tera-Z
 - Compare with global fits using MFV and U(3)⁵ flavor assumptions
 - Compare with FCC-ee Z projections

Top-loop mediated new physics

• Top mass enhances contribution

- Top contributions that contribute at NLO:
 - Dipole: $C_{uW}[3,3], C_{uB}[3,3]$
 - Top-Yukawa: $C_{u\phi}[3,3]$
 - Top-Z coupling:

 $C_{\phi q}^{(1)}[3,3], \ C_{\phi q}^{(3)}[3,3], C_{\phi u}[3,3]$

• 4-fermion electron-top interactions

 $C_{eu}[1,1,3,3], C_{lu}[1,1,3,3], \\ C_{lq}^{(1)}[1,1,3,3], C_{lq}^{(3)}[1,1,3,3], C_{qe}[3,3,1,1]$

Results for top quark related operators

• Polarized and unpolarized results

$$\frac{\sigma_{NLO}^{L,R}}{\sigma_{SM,NLO}^{L,R}} = 1 + \Sigma \frac{C_i}{\Lambda^2} \left(\Delta_i^{L,R}(s) + \bar{\Delta}_i^{L,R}(s) \log \frac{\mu^2}{s} \right)$$

• Logs and constants frequently of the same size

		$\Delta_{t}^{L}/\Lambda^{2}$	$\bar{\Delta}_{f}^{L}/\Lambda^{2}$	Δ_i^R / Λ^2	$\tilde{\Delta}_{i}^{R}/\Lambda^{2}$	Δ_t / Λ^2	$\bar{\Delta}_{i}/\Lambda^{2}$
$\sqrt{s} = 1$	240 GeV			$2.81 \cdot 10^{-5}$	$-3.06 \cdot 10^{-2}$	$1.28 \cdot 10^{-5}$	$-1.39 \cdot 10^{-3}$
$C_{eu}[1, 1, 3, 3] \sqrt{s} = 3$	365 GeV			$-8.23 \cdot 10^{-2}$	$-7.11 \cdot 10^{-2}$	$-3.73 \cdot 10^{-2}$	$-3.23 \cdot 10^{-2}$
$\sqrt{s} =$	500 GeV			$-2.76 \cdot 10^{-1}$	$-1.32 \cdot 10^{-1}$	$-1.27 \cdot 10^{-1}$	$-6.07 \cdot 10^{-2}$
$\sqrt{s} = 1$	240 GeV	$-2.90 \cdot 10^{-5}$	$3.15 \cdot 10^{-2}$			$-1.59 \cdot 10^{-5}$	$1.73 \cdot 10^{-2}$
$C_{Iu}[1, 1, 3, 3] \sqrt{s} = 1$	365 GeV	$8.45 \cdot 10^{-2}$	$7.31 \cdot 10^{-2}$		N !	$4.64 \cdot 10^{-2}$	4.01 - 10 ⁻²
$\sqrt{s} =$	500 GeV	$2.91 \cdot 10^{-1}$	$1.39 \cdot 10^{-1}$			$1.58 \cdot 10^{-1}$	$7.54 \cdot 10^{-3}$
$\sqrt{s} = 1$	240 GeV	$-6.70 \cdot 10^{-3}$	$-3.29 \cdot 10^{-3}$			$-3.67 \cdot 10^{-3}$	$-1.80 \cdot 10^{-3}$
$C_{ls}^{(1)}[1, 1, 3, 3] \sqrt{s} = 3$	365 GeV	-1.11 - 10-1	$-7.62 \cdot 10^{-2}$			$-6.09 \cdot 10^{-2}$	$-4.18 \cdot 10^{-2}$
1	500 GeV	$-3.07 \cdot 10^{-1}$	$-1.45 \cdot 10^{-1}$			$-1.66 \cdot 10^{-1}$	$-7.86 \cdot 10^{-3}$
Va	240 GeV	$-4.84 \cdot 10^{-3}$	$2.52 \cdot 10^{-2}$	$-2.34 \cdot 10^{-9}$	$-2.03 \cdot 10^{-3}$	$-3.71 \cdot 10^{-3}$	$1.29 \cdot 10^{-2}$
$C_{l_{2}}^{(3)}[1, 1, 3, 3] \sqrt{s} = 1$	365 GeV	$8.61 \cdot 10^{-2}$	$6.17 \cdot 10^{-2}$	$-4.06 \cdot 10^{-3}$	$-2.03 \cdot 10^{-3}$	$4.54 \cdot 10^{-2}$	3.29 - 10-2
$\sqrt{s} =$	500 GeV	$2.62 \cdot 10^{-1}$	$1.20 \cdot 10^{-1}$	$-5.29 \cdot 10^{-3}$	$-2.01 \cdot 10^{-3}$	$1.39 \cdot 10^{-1}$	6.40 - 10-3
$\sqrt{s} = 1$	240 GeV			$6.51 \cdot 10^{-3}$	$3.19 \cdot 10^{-2}$	$2.95 \cdot 10^{-3}$	$1.45 \cdot 10^{-2}$
$C_{qs}[3,3,1,1] \sqrt{s} = 3$	365 GeV			$1.08 \cdot 10^{-1}$	$7.41 \cdot 10^{-2}$	$4.90 \cdot 10^{-2}$	$3.36 \cdot 10^{-3}$
$\sqrt{s} =$	500 GeV			$2.91 \cdot 10^{-1}$	$1.38 \cdot 10^{-1}$	$1.34 \cdot 10^{-1}$	$6.33 \cdot 10^{-3}$

In preparation: Tables for all operators that contribute for various energies

*QED corrections considered separately

S. Dawson, BNL

$e^+e^- \rightarrow ZH$ is window to many new interactions

Observables at different scales: Z pole observables at M_Z , Higgstrahlung at Vs

2406.03557

Go through plot slowly

- Assume accuracy of 0.5% for Vs=240 GeV
- At vs=240 GeV most of the information from Log terms
- C_{φ} does not have log dependence

Results have different energy dependence

- Assume accuracy of 1% for Vs=365 GeV
- Result at Vs=365 GeV much less sensitive than at Vs=240 GeV

Now add constant pieces

• At Vs=365 GeV, both constant pieces and log terms matter

Add limits from Z-pole data

- Z-pole data has no C_{φ} dependence
- Consider new physics only in top quark interactions (MFV) or with a U(3)⁵ flavor symmetry

Z pole SMEFT NLO: <u>2304.00029</u>, <u>2201.09887</u>

S. Dawson, BNL

Limits will be improved with future Z-pole running

- Z pole running and Higgstrahlung give complementary information
- (Note y-axis scale)

Bellafronte

Sensitivity to CP violation

- Higgstrahlung at e⁺e⁻ colliders is sensitive to CP violation in the gauge sector at NLO
- At tree level and to O(1/Λ²), CP violating dimension-6 operators do not interfere with the SM contribution from e⁺e⁻ → ZH (since SM contribution is real and CP violating piece is imaginary)
- At one-loop, there is a contribution from imaginary part of loop integrals

$$\begin{split} O_{\tilde{W}} = &\epsilon_{abc} \tilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c,\mu}_{\rho} \\ O_{\phi \tilde{W}} = &\tilde{W}^{a}_{\mu\nu} W^{\mu\nu b} (\phi^{\dagger}\phi) \\ O_{\phi \tilde{B}} = &\tilde{B}_{\mu\nu} B^{\mu\nu} (\phi^{\dagger}\phi) \\ O_{\phi \tilde{W}B} = &\tilde{W}^{a}_{\mu\nu} B^{\mu\nu} (\phi^{\dagger}\sigma^{a}\phi) \end{split}$$

* These operators contribute at tree level to $e^+e^- \rightarrow W^+W^-$

S. Dawson, BNL

CP violation at future e⁺e⁻ colliders

• Define CP violating asymmetry

 $A_{CP} = \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)}$

- CP violation in the gauge sector is strongly limited by eEDMs
 - eEDM depends on SMEFT coefficients

$$d_e = \sqrt{2}vIm\left\{\sin\theta_W \frac{C_{eW}}{\Lambda^2} - \cos\theta_W \frac{C_{eB}}{\Lambda^2}\right\}$$

- RGE evolution generates $C_{\phi \tilde{W}B}, C_{\phi \tilde{W}}, C_{\phi \tilde{B}}$
- Limits from angular observables at LHC from H-> 4 lepton

eEDM, LHC, e⁺e⁻ probes of CP violation are complementary

eEDM: 2109.15085, 1810.09413

2406.03557

Sensitivity to top operators in $e^+e^- \rightarrow ZH$

Combination of measurements at different energies can pin down coefficients very precisely

Example: 2HDMs generate $C_{u\phi}$ [3,3] and C_{ϕ}

Global fits: 2012.02779, 2404.12809

Including QED

• QED treated separately from weak corrections to aid in including with Monte Carlos for ISR

$$\sigma = \sigma_{LO} (1 + \delta_{WEAK} + \delta_{QED})$$
$$\delta_{QED} \sim \frac{\alpha}{2\pi} \log \left(\frac{s}{m_e^2}\right)$$

Conclusions

- We are happy to produce numbers for specific operators, polarizations and energies
- Eventually, results should be combined in global fits with NLO predictions to determine sensitivity to new operators
- Fits including only C_{ϕ} overestimate sensitivity
- Not all relevant NLO SMEFT calculations exist (Z pole and Higgstrahlung complete at NLO dimension-6 SMEFT)