

SHOGWAVE

Superconducting cavities for the observation of gravitational waves

The project team:

Julien Branlard, Lars Fischer, Wolfgang Hillert, Tom Krokotsch, Gudrid Moortgat-Pick, Krisztian Peters, Linus Pfeiffer, Andreas Ringwald, Udai Singh, Louise Springer, **Marc Wenskat** (+ more to come)

IDT-WG3-Phys Open Meeting – 27.6.2024

Gravitational Waves & Cavity – How does it work?

Indirect measurement using heterodyne detection

- Energy transfer from pump mode with ω_0 to signal mode with ω_{π} due to (resonant) GW deformation of cavity
- Heterodyne = GW is in resonance with frequency difference of two cavity modes (here: pump and signal mode)
- $\Delta \omega = \omega_{\pi} \omega_0$ is tunable by spring constant k aka cavity geometry
- Highest sensitivity: GW frequency $\omega_g \approx$ mechanical resonance $\omega_m \&$ mechanical resonance $\omega_m \approx$ rf frequency difference $\Delta \omega$
- Not just frequencies, but patterns matter: GW couples to modes with quadrupole symmetry

Extend detection reach beyond interferometers

made with gwplotter.com 10 -12 Hanford, Washington (H1) Livingston, Louisiana (L1) Stochastic IPTA background 1.0 0.5 10 -14 NANOgrav -0.5 Strain (10^{-21}) -1.0 L1 observed ΔL 10 ⁻¹⁶ H1 observed H1 observed (shifted, inverted) $h_c =$ \overline{L} Massive binaries **Characteristic Strain** 0. 10 ⁻¹⁸ LISA LIGO 0.0 -0.5 -1.0 Numerical relativity Numerical relativity aLIGO Reconstructed (wavelet) Reconstructed (wavelet) Туре ІА Extreme mass Reconstructed (template Reconstructed (template) 10 -20 ratio inspirals supernov GW150914 . ham 0.0 -0 5 Residual 10 -22 Frequency (Hz) 51 256 collapse rnovae 10 -24 128 64 32 10 ⁻²⁶ 0.40 0.30 0.35 0.40 0.45 0.30 0.35 0,45 10⁻¹⁰ 10-4 10-2 10⁰ 10² Time (s) 10 -8 10-6 104 10⁶ Time (s) Frequency / Hz [Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)]

GW150914

Any GW signal would be a spectacular discovery

Reach of a MAGO-like Cavity

"MAGO"-like cavity – two spherical cells

- T = 1.8 K
- $E_{acc} = 30 \text{ MV/m}$
- $Q_0 = 10^{10}$
- $TE_{011} \omega_0 \approx 2 GHz$
- $ω_m = Δω = 20 \text{ kHz}$
- $Q_{mech} = 10^6$

scanning = on-resonance signal: $\omega_g = \omega_m = \Delta \omega$ non-scanning = off-resonance signal: $\omega_g > \omega_m = \Delta \omega$

(thermal) = if mechanical noise can be neglected $\propto T/Q^2$

The MAGO Cavity

What was PACO/MAGO

PACO (1999)

- 2-cell pillbox-cavity @ 3GHz as proof-of-principle experiment
- Low Q, test of RF system, excitation of signal mode
- MAGO (2000s)
 - 1st Cavity: 2-cell cavity with optimized geometry
 - Underwent chemistry and cold test to obtain $Q_0(U)$ for TE_{011}
 - 2nd Cavity: 2-cell cavity with variable coupling and optimized geome
 - Never treated nor tested on shelf for >15y @ INFN Genova
- Collaboration betwe

evive MAGO

Stored Energy [Joule]

02

04

06

Continuation of R&D efforts

Cavity at DESY

June

2023

End

2024

Beginning

2025

 Mechanical characterisation and RF measurements at room temperature (done)

Cavity at FNAL

 Today - Treatment of cavity, RF antenna design, cavity tuning and first cryogenic characterisation

Cavity back at DESY

Cryogenic test with (initial) LLRF system

Cavity back at FNAL

· First GW search in existing cryostats at Fermilab

Result from warm commissioning

Cavity is out of shape

RF measurement is worrysome

Explanation of warm rf measurements: RLC circuits

- Model the two MAGO cells as inductively coupled RLC circuits
- External oscillator U(t) in circuit 1
- Mechanical analogue: double pendulum (small angles)

• E.O.MS:
$$L_{1} \stackrel{i}{\perp}_{1} + R_{1} \stackrel{i}{\perp}_{1} + \stackrel{i}{\leftarrow}_{1} \stackrel{i}{\perp}_{1} = -L_{i} \stackrel{i}{\perp}_{1} + \stackrel{i}{\leftarrow}_{1} \stackrel{i}{\perp}_{1} = -L_{i} \stackrel{i}{\perp}_{1} + \stackrel{i}{\leftarrow}_{1} \stackrel{i}{\perp}_{1} = -L_{i} \stackrel{i}{\perp}_{1} + \stackrel{i}{\leftarrow}_{2} \stackrel{i}{\perp}_{2} = -L_{i} \stackrel{i}{\perp}_{1}$$

Solution of the coupled E.o.Ms

Varying coupling parameter k

Weak coupling is inherent!

 $k_{cc} = 2\frac{\omega_1 - \omega_0}{\omega_1 + \omega_0}$

$\Delta \Omega = 1 \ MHz$; $k_0 = 10^{-4}$ Only weakly coupled 0/ π mode

- Why is this bad? Sensitivity $\propto \vec{E}_0 \cdot \vec{E}_1 = \hat{E}_0 \hat{E}_1 \cos(\theta)$
- Recover by bringing $\Delta\Omega$ closer together $\Delta\Omega = \mathbf{1} \ \mathbf{k} \mathbf{H} \mathbf{z}$; $k_0 = 10^{-4}$
- Need to tune cavity/cells to achieve wanted $\Delta \Omega$

Tuning done at FNAL 2 weeks ago

Major research topics – kill the noise!

Noise sources

[Berlin et al., arXiv:hep-ph/1912.11048v1 (2019)]

What is the noise spectrum in the cryostats?

LLRF setup for MAGO

Proposal 2

CSI 1 is used to improve field regulation

CSI 2 is used to compare the pickups

Comment: Only works in GDR

Summary

- SRF cavities for GW detection opens up a frequency range currently not probed
- Broadband potential makes this approach so interesting
- >50y of GW search first prototype studies and physics run with MAGO are a pathfinder
- Significant overlap with LLRF development for accelerators
- Need of "silent" environment and cryogenic infrastructure
 → we can operate parasitically at a cold accelerator

Thank you

Thanks to

Asher Berlin (FNAL), Thorsten Büttner (DESY), Sergio Callatroni (CERN), Ralph Doermann (DESY), Sebastian Ellis (U Geneva), Erika Garutti (UHH), Gianluca Gemme (INFN), Oliver Gerberding (UHH), Bianca Giaccone (FNAL), Michael Grefe (UHH), Ivan Gonin (FNAL), Roni Harnik (FNAL), Beate Heinemann (DESY), Matthias Hoffmann (DESY), Timergali Khabiboulline (FNAL), Frank Ludwig (DESY), Norbert Meyners (DESY), Cornelius Martens (UHH), Andrea Muhs (DESY), Sam Posen (FNAL), Yuri Pischalnikov (FNAL), Jörn Schaffran (DESY), Tobias Schnautz (DESY), Udai Singh (DESY), Louise Springer (DESY), Jan-Hendrick Thie (DESY), Patrik Wiljes (DESY) and many more to come

Questions?