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Gravitational Waves & Cavity 
– How does it work?



Indirect measurement using heterodyne detection
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• Energy transfer from pump mode with ω0 to signal mode with ωπ due to (resonant) GW deformation of cavity
• Heterodyne = GW is in resonance with frequency difference of two cavity modes (here: pump and signal mode)
• Δω= ωπ – ω0  is tunable by spring constant k aka cavity geometry
• Highest sensitivity: GW frequency ωg  ≈ mechanical resonance ωm & mechanical resonance ωm ≈ rf frequency difference Δω
• Not just frequencies, but patterns matter: GW couples to modes with quadrupole symmetry → mechanical l=2 mode / TE011 mode
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Extend detection reach beyond interferometers
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Any GW signal would be a spectacular discovery

[Abbott et al., Phys. Rev. Lett. 116, 061102  (2016)]
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Reach of a MAGO-like Cavity
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[Berlin et al. Phys.Rev.D 108, 084058 (2023)] & private communication S. Ellis

„MAGO“-like cavity – two spherical cells
• T = 1.8 K
• Eacc = 30 MV/m
• Q0 = 1010

• TE011 ω0 ≈ 2 GHz
• ωm = Δω = 20 kHz
• Qmech = 106 

scanning = on-resonance signal: ωg = ωm = Δω
non-scanning = off-resonance signal: ωg > ωm = Δω

(thermal) = if mechanical noise can be neglected ∝ T/Q²

First LIGO Signal



The MAGO Cavity



What was PACO/MAGO

• PACO (1999)

- 2-cell pillbox-cavity @ 3GHz as proof-of-principle experiment
- Low Q, test of RF system, excitation of signal mode

• MAGO (2000s) 

- 1st Cavity: 2-cell cavity with optimized geometry
- Underwent chemistry and cold test to obtain Q0 (U) for TE011

- 2nd Cavity: 2-cell cavity with variable coupling and optimized geometry
- Never treated nor tested – on shelf for >15y @ INFN Genova

• Collaboration between FNAL, INFN, DESY, UHH to revive MAGO
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[Ballantini et al., arXiv:gr-qc/0502054 2005]

Vacuum leak
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Continuation of R&D efforts 

Beginning

2025



Result from warm commissioning



Cavity is out of shape
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Donut-shaped dent
around symmetry axis

Cavity is bent

No damage to flanges / sealing surface. 
Leaktight at RT.
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RF measurement is worrysome

Idea: 
Short one cell and measure the otherΔω = 1 MHz 

Simulated Eigenfrequency Electric Field Distributions

2.073 GHz (2 merged peaks)

2.077 GHz (2 merged peaks)

TE011

0-mode: 2.10381 GHz
π-mode: 2.10390 GHz
Δω ≈ 9 kHz 
→ @RT: 2 merged peaks

Results: 
• Measurements ≠ Simulations
• Eigenfrequencies of „single-cells“ Ω1 ≠ Ω2

• Eigenfrequencies Ωi of „single-cells“ 
≈ eigenfrequencies ωi of cavity

Not wanted nor expected! 
Remember the coupled pendulum? 
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Explanation of warm rf measurements: RLC circuits

𝑘0 =
𝐿𝑐

𝐿1𝐿2

Ω𝑖 =
1

𝐿𝑖𝐶𝑖

• Model the two MAGO cells as inductively coupled RLC circuits

• External oscillator U(t) in circuit 1

• Mechanical analogue: double pendulum (small angles)

• E.o.Ms:
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Solution of the coupled E.o.Ms

Cell 1

Cell 2

𝑘0 = 10−2, ΔΩ = 1 MHz

Fourier transform spectrum assuming
𝑈0 = 𝑈𝑜𝑠𝑐 sin(𝜔𝑖𝑡)

Symmetric Antisymmetric

Ω𝑖
𝜔0 𝜔1

𝑘𝑐𝑐,𝑇𝐸𝑆𝐿𝐴 = 1.5 % = 1.5 x 10-2

≈
𝑆 1

2



𝑘0 = 10−2, ΔΩ = 1 MHz 𝑘0 = 10−3, ΔΩ = 1 MHz 𝑘0 = 10−4, ΔΩ = 1 MHz
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Varying coupling parameter k
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Weak coupling is inherent! Cell similarity matters

𝑘𝑐𝑐 = 2
𝜔1 − 𝜔0

𝜔1 + 𝜔0
≈ 2

1 𝑀𝐻𝑧

4 𝐺𝐻𝑧
= 5 × 10−4

Only weakly coupled 0/π mode

• Why is this bad? 

• Recover by bringing ΔΩ closer together

• Need to tune cavity/cells to achieve wanted ΔΩ

∆Ω = 1𝑀𝐻𝑧 ; 𝑘0 = 10−4

∆Ω = 𝟏 𝒌𝑯𝒛 ; 𝑘0 = 10−4

Cell 1

Cell 2

Cell 1

Cell 2

Symmetric „Antisymmetric“

Symmetric Antisymmetric

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∝ 𝐸0 ∙ 𝐸1 = ෠𝐸0 ෠𝐸1cos(𝜃)

𝜃
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Tuning done at FNAL 2 weeks ago



Major research topics – kill the noise! 



Noise sources  
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[Berlin et al., arXiv:hep-ph/1912.11048v1 (2019)]
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What is the noise spectrum in the cryostats? 

• We can specifiy where we want to be in terms of noise

• But what is the current situation – aka where do we start

• First step in characterization:

- Frequency drift & microphonics of a cavity over hours / days

- 3x 1D accelerometer at insert inside cryostat

Guaranteed Top,min = 77 K

Ground motion noise @ INFN Lab 

[Ballantini et al., arXiv:gr-qc/0502054 2005]

0.5 kHz

3.72 kHz

≈ 4.05 kHz

4.43 kHz

4.84 kHz



Page 20Gravitational Wave Vertical Cryostat and MAGO cavity cooldown | Udai Raj Singh, MAGO Workshop

Flow scheme of GW vertical cryostat (GWVC) and GW valve box (GWVB) 

ACPS

GWVC

GWVB

MAGO Cavity
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LLRF setup for MAGO

| RF field detection and control | Julien Branlard, 26.06.2024

Proposal 2

CSI 1 is used to improve field 

regulation

CSI 2 is used to compare the 

pickups

Comment:

Only works in GDR
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Summary

• SRF cavities for GW detection opens up a frequency range currently not probed

• Broadband potential makes this approach so interesting

• >50y of GW search – first prototype studies and physics run with MAGO are a pathfinder

• Significant overlap with LLRF development for accelerators

• Need of „silent“ environment and cryogenic infrastructure

→ we can operate parasitically at a cold accelerator
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Questions?
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