IDT-WG2 report

KEK / IDT-WG2 Shin MICHIZONO (KEK)

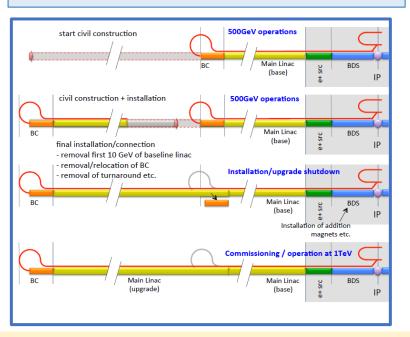
- ITN meeting after LCWS2024 (July 12, 8AM-10AM)
- LC vision session at LCWS2024
- Next IDT-WG2

ITN meeting just after LCWS 2024 (12th July)

- ITN meeting after LCWS2024 (12th July, 8AM-10AM (in JST), hybrid)
- the **second meeting** (following the last ITN information meeting at CERN in October 2023) Indico is ready and I will inform you by mailing list. (registration is necessary) Preliminary program

Start	End	Talks	Contents	Speaker
8:00	8:05	Welcome		Tetsuyuki Muramatsu
8:05	8:13	ITN general		Shin MICHIZONO
8:13	8:21	SRF Asia	WPP1-2	Kirk YAMAMOTO
8:21	8:29	SRF Europe	WPP1-2	Enrico Cenni
8:29	8:37	Sources Undulator/Target	WPP6/7	Gudrid Moortgat-Pick
8:37	8:45	Sources e-Driven	WPP8-11	Yoshinori Enomoto
8:45	8:53	Nanobeam inj./ext.	WPP14	Phil Burrows
8:53	9:01	Nanobeam ATF	WPP-15	Angeles Faus-Golfe
9:01	9:09	Nanobeam Dump	WPP-17	Nobuhiro Terunuma
9:09	9:29	ITN organization		Tatsuya NAKADA
9:29	10:00	Discussion		

LC Vision session at LCWS2024

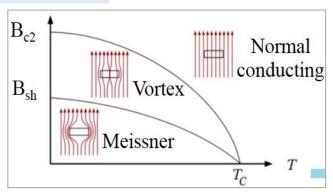

	Follow-local II-II	44.00 44.45	the Hell the leteron tioned December 2	44.00 44.45
	Fukutake Hall	14:30 - 14:45	Ito Hall, Ito International Research Center	14:30 - 14:45
	CEPC: accelerator developments	yuhui li	Opportunities and Experimental Challenge	es at the Higgs
	Fukutake Hall	14:45 - 15:00	Junping Tian	
15:00	FCCee: accelerator developments Fra	nk Zimmermann	Highlights from LHC detector upgrades Gu	ıstaaf Brooijmans
	Fukutake Hall	15:00 - 15:15	Ito Hall, Ito International Research Center	15:00 - 15:15
	Energy Upgrades of a linear Higgs factory	Emilio Nanni	Highlights from detectors for EIC	Taku Gunji
	Fukutake Hall	15:15 - 15:30	Ito Hall, Ito International Research Center	15:15 - 15:30
	coffee			
	Foyer, Ito International Research Center			15:30 - 16:00
L6:00	Plenary: Open discussion sesson - Global V	/ision for a Linear	Collider facility Jenny Lis	st, Steinar Stapnes
			Preliminary topic	s with 5 m
			 Stages and ph 	ysics goals
			• ILC at CERN (2	250 GeV)
			 ILC realization 	of full pro
L7:00			 CLIC/C3 realiz 	ation of fu
	Ito Hall, Ito International Research Center		 RELIC upgrade 	
	Posters: Posters and Reception		Nealizations o	•
			 Community as 	•
18:00			Implications for	or explorin

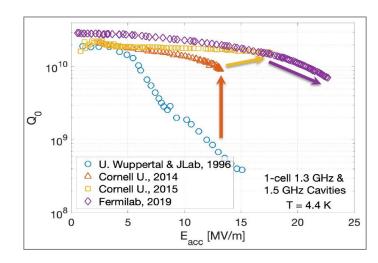
ILC Baseline and the Upgrades

Quantity	Symbol	$_{ m Unit}$	Initial	\mathcal{L} Upgrade	Z pole	E / L	C Upgrad	es
Centre of mass energy	\sqrt{s}	${ m GeV}$	250	250	91.2	500	250	1000
Luminosity	$\mathcal L$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	f_{rep}	$_{ m Hz}$	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	$_{ m ns}$	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	mA	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{pu ls e}$	μ s	727	961	727/961	727/961	961	897
Accelerating gradient	G	$\mathrm{MV/m}$	31.5	31.5	31.5	31.5	31.5	45
Average beam power	P_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	mm	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma\epsilon_x$	$ m \mu m$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma\epsilon_y$	\mathbf{nm}	35	35	35	35	35	30
RMS hor. beam size at IP	σ_x^*	\mathbf{nm}	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	\mathbf{nm}	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1 $\%$	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power *	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	L_{site}	$\rm km$	20.5	20.5	20.5	31	31	40

Energy upgrades:

- 500GeV (**31.5 MV/m Q₀=1** x 10¹⁰)
 - 1TeV (45 MV/m $Q_0=2 \times 10^{10}$, 300 MW)
 - more SCRF, tunnel extension


Further energy upgrades can be realized by


- Nb₃Sn cavity (>80MV/m)
- Nb Traveling Wave (TW) structures (>70MV/m)

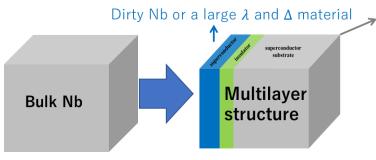
Nb₃Sn / multilayer cavity for the future upgrade

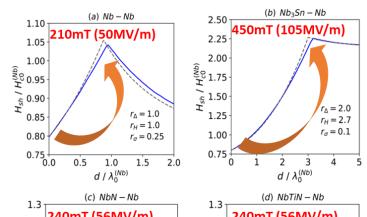
Courtesy, S. Posen

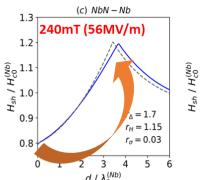
Nb₃Sn

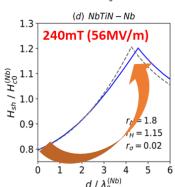
Nb₃Sn Potential in high-G future

SRF cavity

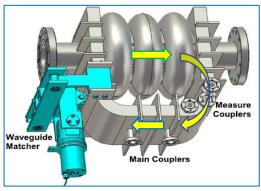

- B_{sh} = practical limit for SRF
 - Bs_{sh-Nb}: 210 mT
 - Bs_{sh-Nb3Sn}: 430mT

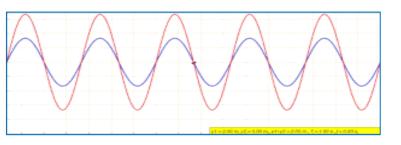





Nb₃Sn progress at Fermilab. S. Posen et al., SUST, 34, 02507 (2021)

multilayer



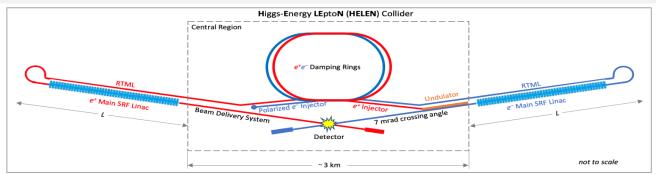


A new concept for SRF proposed for ILC-3TeV and Helen: Traveling Wave (TW) SRF cavity, compared with Standing Wave

Prototype TW structure under test

Courtesy: H. Padamsee et al., for ILC-3TeV S. Belomestnykh et al., for HELEN

SW: TESLA cavity (ILC baseline)


TW: proposed for ILC-3TeV, Helen

>70 MV/m operation

- ← Red standing wave High Peak Fields,
- ← Green (acc.) and Blue (Return) Waves are Travelling Waves Lower peak fields,
- ← Guide blue wave in a return wave-guide to avoid SW peak fields
 - attached to both ends

HELEN: A LINEAR COLLIDER BASED ON ADVANCED SRF TECHNOLOGY*

S. Belomestnykh^{†,1}, P. C. Bhat, M. Checchin[‡], A. Grassellino, M. Martinello[‡], S. Nagaitsev², H. Padamsee³, S. Posen, A. Romanenko, V. Shiltsev, A. Valishev, V. Yakovlev Fermi National Accelerator Laboratory, Batavia, IL, USA ¹also at Stony Brook University, Stony Brook, NY, USA ²also at University of Chicago, Chicago, IL, USA ³also at Cornell University, Ithaca, NY, USA

Summary of future upgrade using SRF

	ECM[GeV]	Gradient [MV/m]	Length [km]	#of cavities	Additional material cost [MILCU*1]	Technology ready
TDR	250	31.5	20.5	~8,000	(~5,000 MILCU)	
TDR	500	31.5	<mark>33.5</mark>	~16,000	+3,000 MILCU	
TDR	1,000	45	<mark>44.5</mark>	~23,000	+3,000+7,100 MILCU	In 10 years
Nb3Sn/multilayer or TW	500	63	20.5	<mark>~8,000</mark> *2	?	In 20 years
NB3Sn/multilayer & TW	1,000	126 ^{*3}	20.5	<mark>~8,000</mark> *4	?	In >20 years

^{*1} based on the ILC TDR and referring the ILC unit as of 2012.

^{*4} Requires RF source upgrade (x4) + Cryogenic upgrade (~x4)

		500 GeV				
		Baseline	Scenario A	Scen	Scenario C	
				upgrade	base	
Energy range Gradient	GeV MV/m	15–250 31.5	15–500 31.5	15–275 45	275–500 31.5	15–500 45
Num. of cavities		7400	15 280	8190	7090	10 700
				total cavit	ties: 15280	
Linac length	km	12	25	9.5	11.5	17.5
			total length: 21.0			

15.12.2.2 Summary of Value and Labour changes

The total Value changes associated with scenario A, B and C are 6,706, 5,489 and 7,082 MILCU, respectively. These increases correspond to 81%, 66%, and 86%, respectively, of the 500 GeV Value estimate for the baseline with luminosity upgrade. The total Labour changes associated with scenario A, B and C are 11,988, 9,416 and 14,256 thousand person-hrs, respectively. These increases correspond to 50%, 42%, and 59%, respectively, of the 500 GeV baseline Labour estimate with luminosity upgrade.

^{*2} Requires RF source upgrade (x2) + Cryogenic upgrade (~x2)

^{*3} Surface discharge etc. can happen at such a high gradient operation

¹⁹This is not quite correct, since some of the baseline RTML Value and Labour is associated with the beamlines from the damping rings to the long 5 GeV transfer line. The RTML contribution to the 1 TeV upgrade is thus slightly overestimated.

ILC Technical Design Report: Volume 3, Part II

Next IDT-WG2 meeting: June 23, 2024 (4 weeks later)

(if nothing new, we will skip and move to summer vacation)