

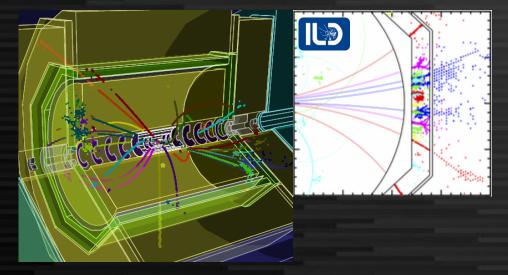
Development of particle flow algorithm with GNN for Higgs factories

Taikan Suehara / 末原 大幹 (ICEPP, The University of Tokyo)

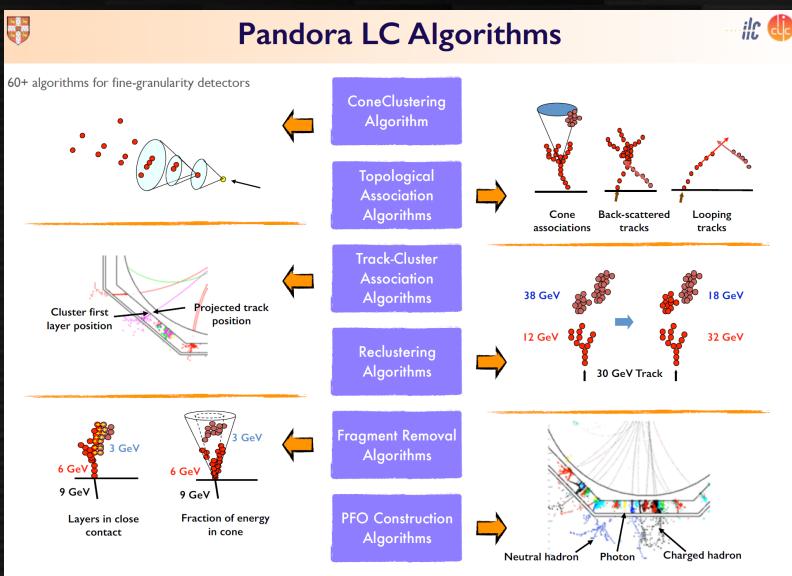
Collaborators: T. Murata (U. Tokyo), T. Tanabe (MI-6 Co.), L. Gray (Fermilab), P. Wahlen (IP Paris & ETHZ / internship at Tokyo)

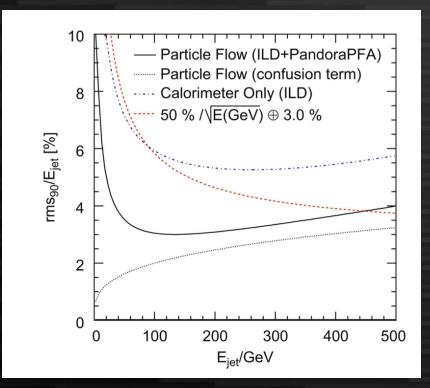
Particle flow for Higgs factories

- High granular calorimetry
 - 3D pixels for imaging EM/hadron showers at calorimeters
 - eg. 10⁸ channels for ILD ECAL
 - Separation of particles inside jets
 - → ~2x better energy resolution by separation of contribution from charged particles
 - Software algorithm essential (as well as hardware design)
- Particle Flow algorithm
 - Essential algorithm for high granular calorimetry
 - Complicated pattern recognition → good for DNN



Pandora ParticleFlow algorithm



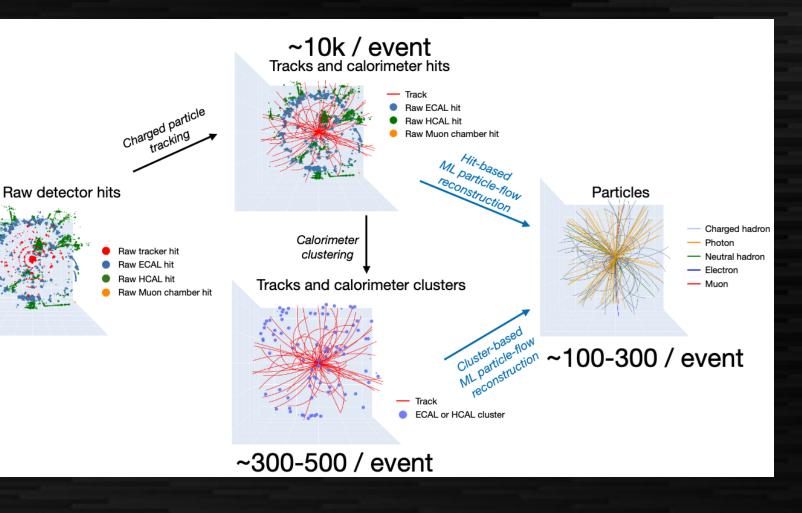


Widely used since 2008
Reasonably good performance
up to ~50 GeV jets
Confusion dominates at
higher energies

Motivations for DNN particle flow

- Performance improvement
 - Confusion dominant at jet energy > 100 GeV
 - More efficient way to separate cluster from charged particles should be investigated
- Integrate other functions
 - Software compensation, particle ID etc. closely related to PFA
- Detector optimization
 - Comparison with different detector settings
 - PandoraPFA too much depends on internal parameters
 - Effect of timing information to be investigated
 - With different timing resolution (1 ns, 100 ps, 10 ps, ...)

Two ways for particle flow with DNN?



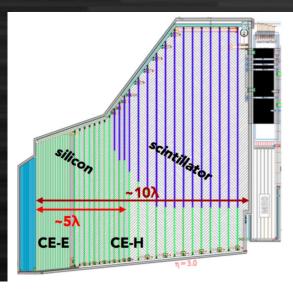
Track-cluster matching from calorimeter hits

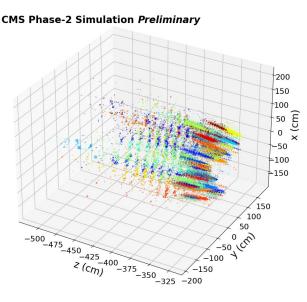
- More freedom
- Distance-based connection more efficient
- We are working this way Track-cluster matching from subclusters
- Less input
- Additional clustering algorithm needed

GravNet for CMS HGCAL

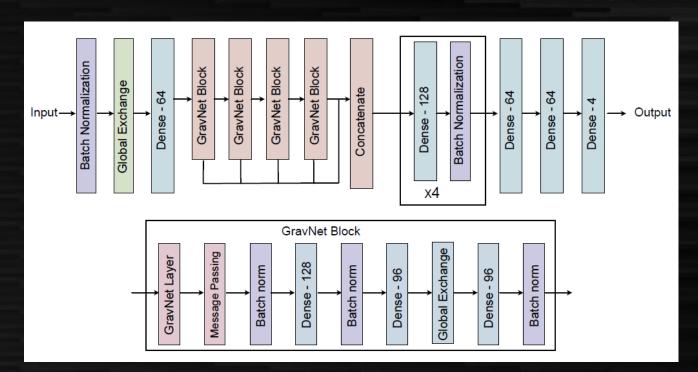
CMS HGCAL

- High granular forward calorimeter for HL-LHC upgrade at CMS
- Similar to ILD calorimeter (silicon pixel + scintillator)
 - Inspired by CALICE development
- Reconstruction at HGCAL
 - Pileup/noise to be separated by software
 - Numerous particles from ~200 pileups
 - Difficult to handle: software algorithm critical
 - DNN reconstruction being investigated
 - Reasonable performance obtained up to ~50 pileups?





The network



Rather complicated network with ~30 hidden layers

"Object condensation" loss function is applied (shown in next page)

Input/output obtained for each hit at calorimeter

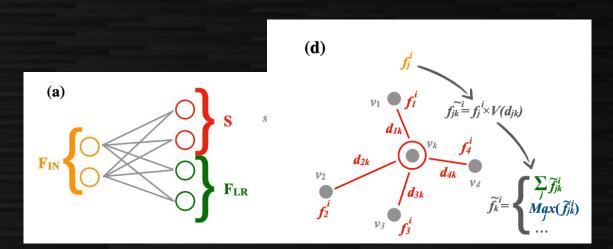
Input: Features at each hit (position, energy deposit, timing)

Output: "condensation coefficient" β, position at virtual coordinate (2-dim) optional output of features such as energy, PID (not used now) Dense (fully-connected layer) inside each hit, GravNet connects hits

GravNet and Object Condensation

GravNet arXiv:1902.07987

- The virtual coordinate (S) is derived from input variables with simple MLP
- Convolution using "distance" at S (bigger convolution with nearer hits)
- Repeat 2 times and concatenate the output with simple MLP

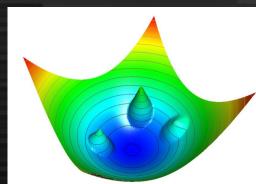


Object Condensation (loss function)

$$L = L_p + s_C (L_\beta + L_V)$$

- Condensation point: The hit with largest β at each (MC) cluster
- L_V: Attractive potential to the condensation point of the same cluster and repulsive potential to the condensation point of different clusters
- L_{β} : Pulling up β of the condensation point
- L_p: Regression to output features
 (energy etc.) → currently not used

arXiv:2002.03605



What we implemented: track-cluster matching

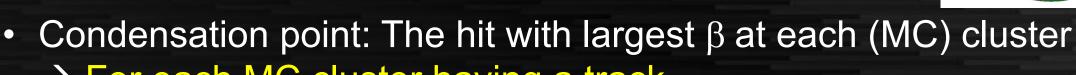
- PFA is essentially a problem "to subtract hits from tracks"
- HGCAL algorithm does not utilize track information
 - Only calorimeter clustering exists
- Putting tracks as "virtual hits"
 - Located at entry point of calorimeter
 - Having "track" flag (1=track, 0=hit)
 - Energy deposit = 0
- Modification on object condensation to forcibly treat tracks as condensation points (details next page)
 - Also modifying clustering algorithm to avoid double-track clusters

Current number of parameters: ~420K

Object condensation and our implementation

Object condensation loss function (the function to minimize)

$$L = L_p + s_C (L_\beta + L_V)$$



- → For each MC cluster having a track, the track is forcibly the condensation point regardless of β
- L_V: Attractive potential to the condensation point of the same cluster and repulsive potential to the condensation point of different clusters (no modification)
- L_{β}: Pulling up β of the condensation point (up to 1) (no modification, but β of tracks become spontaneously close to 1)
- L_p: Regression to output features (energy etc.) → currently not used

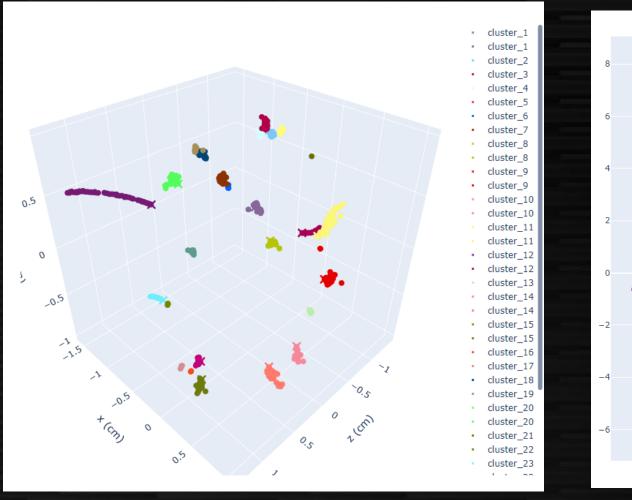
Our samples for performance evaluation

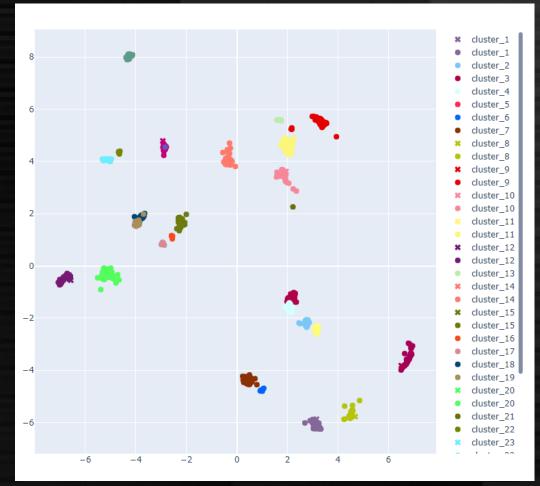
- ILD full simulation with SiW-ECAL and AHCAL
 - ECAL: 5 x 5 mm², 30 layers, HCAL: 30 x 30 mm², 48 layers
 - Taus overlayed with random direction
 - 100k events, 10 GeV x 10 taus / event → 1 million taus
 - 1M events with variable energies produced, to be tested
 - qq (q=u, d, s) sample at 91 GeV
 - ~75k events
 - Official sample for PFA calibration (other energies available)
 - Converted to awkward array stored in HDF5 format
 - A few 10 GB each

Taus: good mixture of hadrons, leptons and photons with some isolation Good for training

Event display – looks working

10 Taus @ 10 GeV each





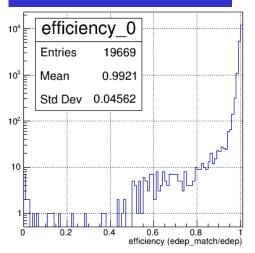
Real 3D coordinate

Output from GNN

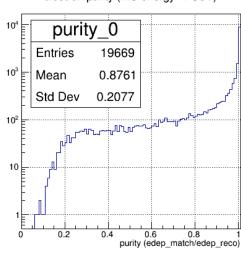
Quantitative evaluation

- Make 1-by-1 connection of MC and reconstructed cluster
 - Reconstructed cluster with highest fraction of hits from the MC taken
 - Multiple reconstructed cluster may connect to one MC cluster
 - The other way does not occur
- Define 3 variables for each MC cluster
 - Edep: total energy deposit of MC cluster
 - Edep_reco: total energy deposit of matched reconstructed cluster
 - Edep_match: total energy deposit of matched reconstructed cluster included in the MC cluster
- Efficiency: edep_match / edep Caution: not fully confirmed results
- Purity: edep_match / edep_reco

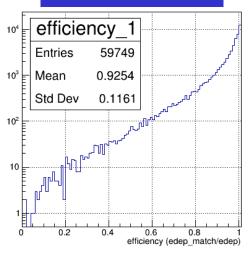
Efficiency & purity for GNN, tau train/tau pred



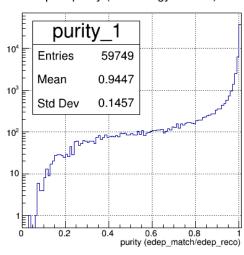
electron purity (MC energy>1 GeV)



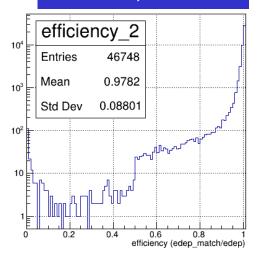
Pions, > 1 GeV



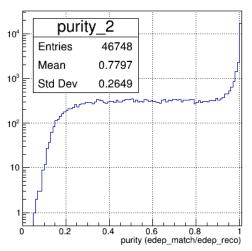
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)



Efficiency:

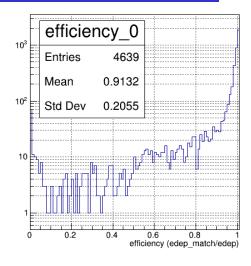
>90% for all particles slightly low in pions

Purity:

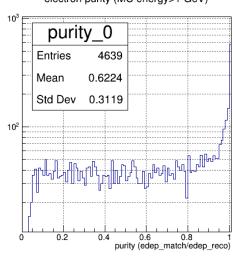
>85% for all tracks
78% for photons
→ merged photons?

Reasonably well reconstructed!

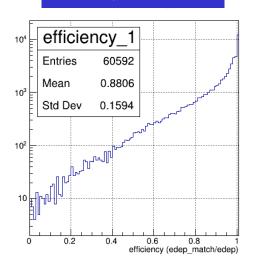
Efficiency & purity for GNN, tau train/qq pred



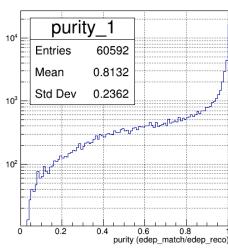
electron purity (MC energy>1 GeV)



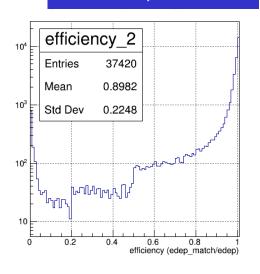
Pions, > 1 GeV



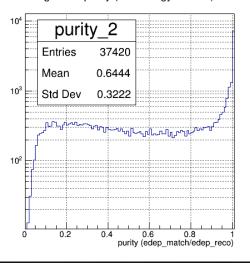
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)



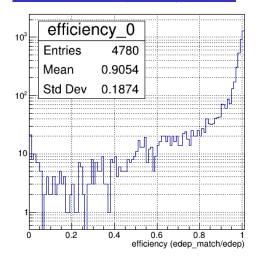
Efficiency:

>88% for all particles slightly worse than taus

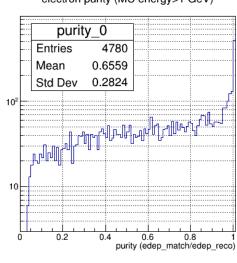
Purity:

Slightly worse in pions Significantly worse in electrons/photons

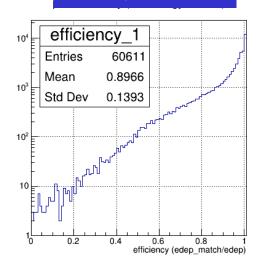
Efficiency & purity for GNN, qq train/qq pred



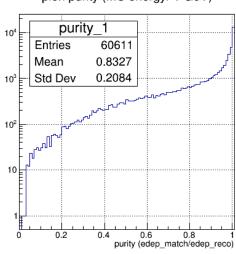
electron purity (MC energy>1 GeV)



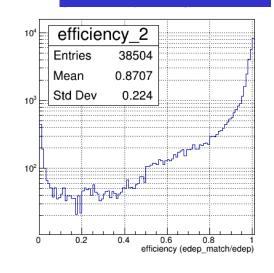
Pions, > 1 GeV



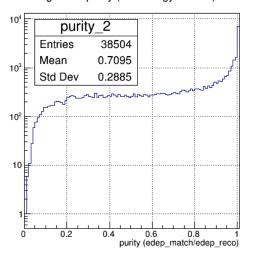
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)

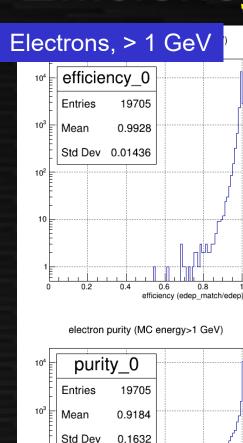


Efficiency:

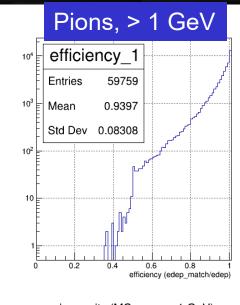
Similar to tau training Strong to different type of events

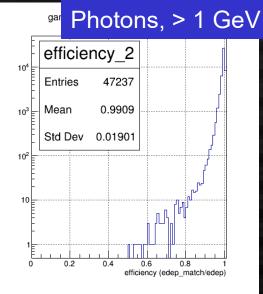
Purity:
Slightly better than tau training

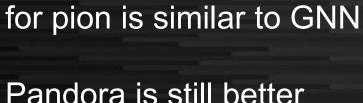
Efficiency & purity with Pandora, ntau events



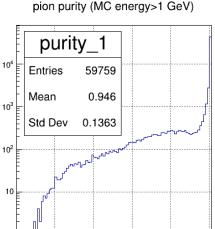
purity (edep match/edep reco



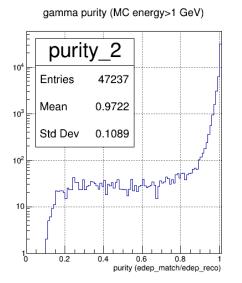




Efficiency and purity

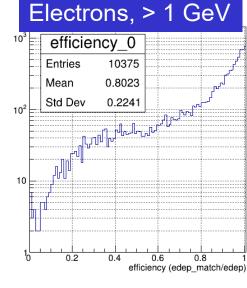


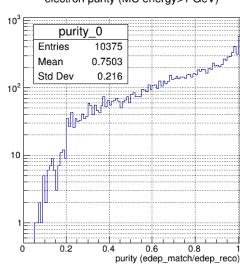
purity (edep_match/edep_reco)



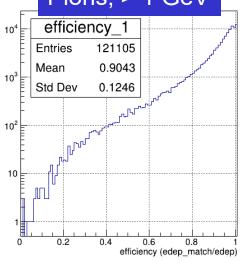
Pandora is still better in photon reconstruction (esp. in purity)

Efficiency & purity with Pandora, qq events

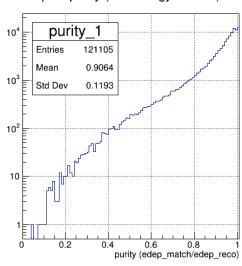




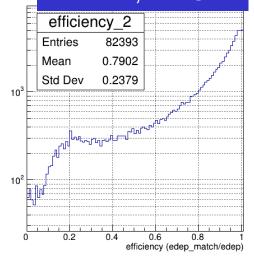
Pions, > 1 GeV



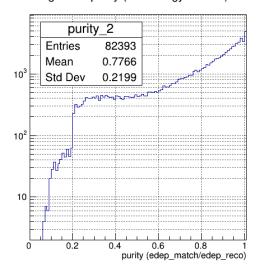
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)



Similar performance with GNN method obtained

Inconsistency with analysis using MC-cluster matching implemented in official software (ILCSoft)

Need to check definition of MC particles/tracks

Comparison of results (> 1 GeV) Preliminary

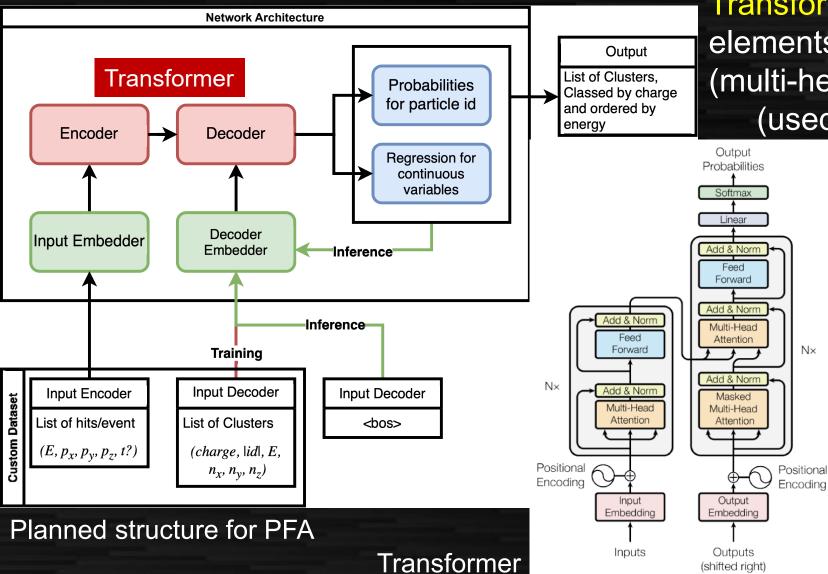
Algorithm train/test	Electron eff.	Pion eff.	Photon eff.	Electron pur.	Pion pur.	Photon pur.
GravNet 10 taus/10 taus	99.2%	92.5%	97.8%	87.6%	94.5%	78.0%
GravNet 10 taus/jets	91.3%	88.1%	89.8%	62.2%	81.3%	64.4%
GravNet jets/jets	90.5%	89.7%	87.1%	65.6%	83.3%	70.9%
PandoraPFA 10 taus	99.3%	94.0%	99.1%	91.8%	94.6%	97.2%
PandoraPFA jets	80.2%	90.4%	79.0%	75.0%	90.6%	77.7%
PandoraPFA jets (ILCSoft)	96.7%	95.5%	96.4%	97.1%	90.4%	97.7%

Still too early to conclude, but performance of GNN comparable to PandoraPFA at least on pions, which have less uncertainty related to MC truth definitions

Plans for further development

- Optimizing network/input
 - Improving MC truth matching (kink tracks, photon emissions from tracks etc.)
 - Output dimension for clustering: currently 2, may be higher
 - Dependence on input sample size
 - Also number of parameters of the network
 - Other hyperparameters like learning rate etc.
 - Training with mixture of taus/jets?
- Clustering method: also a place to use NN
 - Currently applying simple clustering to collect hits around high-beta hits
- Performance study on jet energy resolution (target)
- Utilization of timing information
- Another NN: transformer (next page)

More NLP-like model: transformer



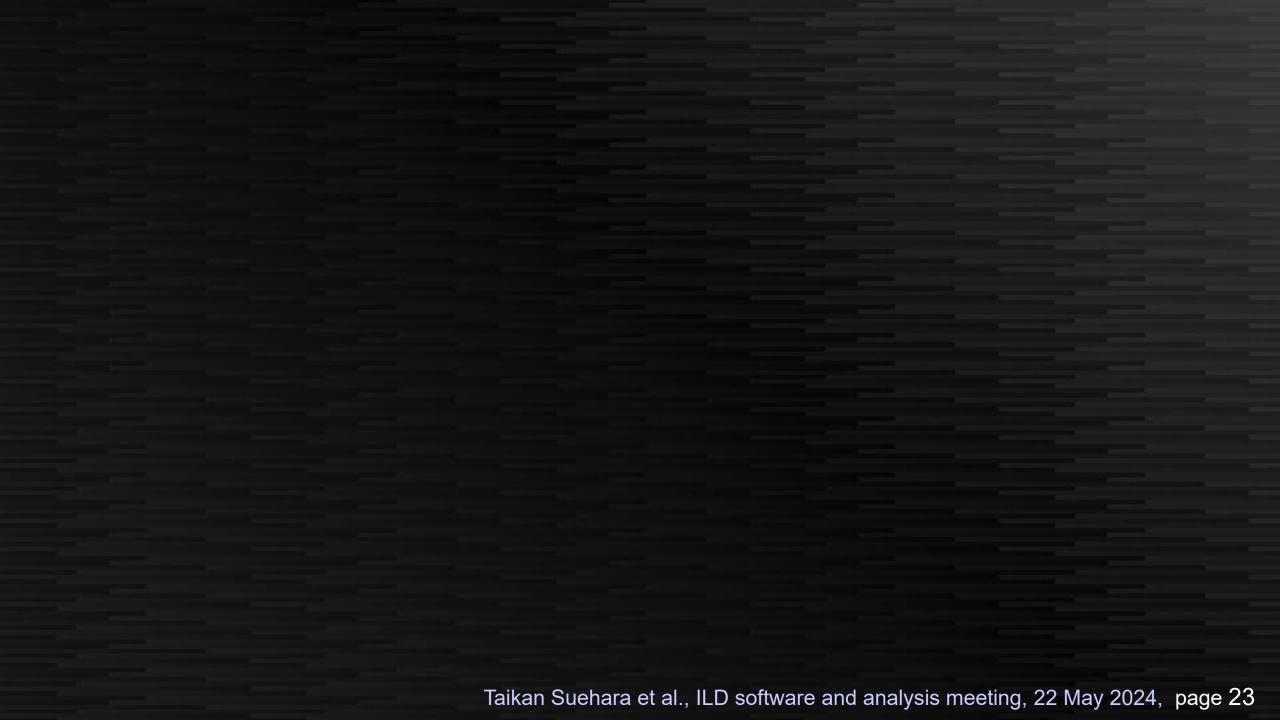
Transformer: training relation among elements (hits in PFA) with (multi-head) self-attention mechanism (used in GPT etc.)

Encoder: accumulate info of all hits/tracks by transformer Decoder:

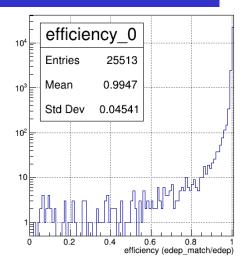
Input cluster info one by one
Output info of next cluster
(training) MC truth clusters
(inference) just provide <bos>
to derive first cluster, using
output as next input
until <eos> obtained
(Inspired by translation NN)

Summary

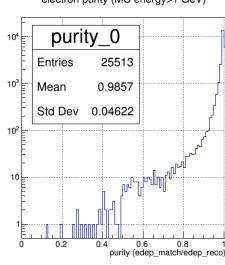
- DNN-based PFA is important
 - For improving performance
 - For detector design/optimization (eg. Timing)
- First implementation of track-cluster matching on GravNet/object condensation done/tested
 - Comparable performance to PandoraPFA (under investigation)
 - Still initial stage of optimization having much hope!
 - Another methodology (transformer) being tried as well



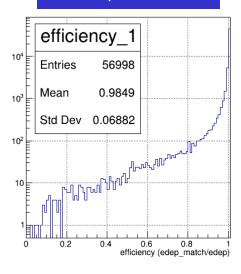
Efficiency & purity with Pandora, ntau events



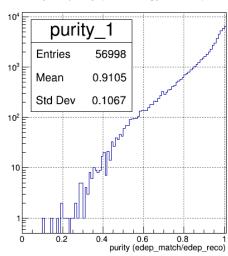
electron purity (MC energy>1 GeV)



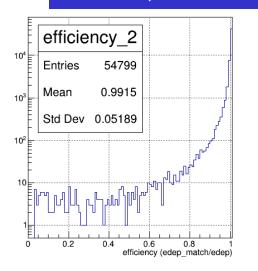
Pions, > 1 GeV



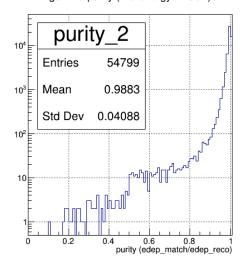
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)



Slightly different algorithm for calculations of efficiency/purity (to be investigated:

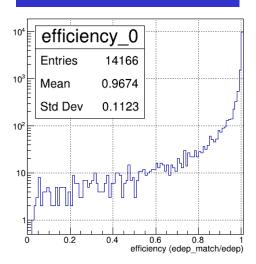
efficiency can be

overestimated)

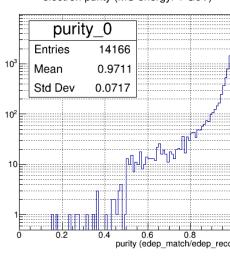
Pandora seems still better

ILCSoft matching difference to be investigated

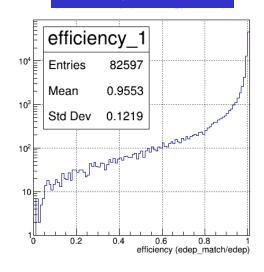
Efficiency & purity with Pandora, qq events



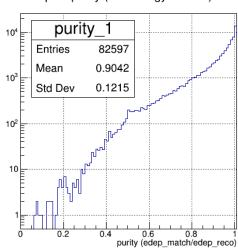
electron purity (MC energy>1 GeV)



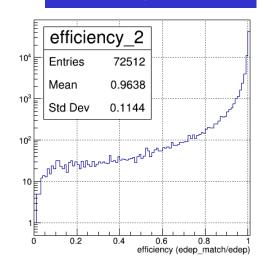
Pions, > 1 GeV



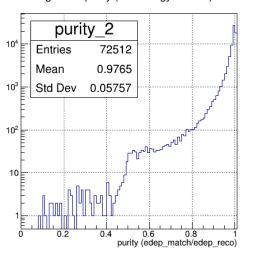
pion purity (MC energy>1 GeV)



Photons, > 1 GeV



gamma purity (MC energy>1 GeV)



Slightly different algorithm for calculations of efficiency/purity (to be investigated: efficiency can be overestimated

Pandora seems still better

ILCSoft matching difference to be investigated