Nik【hef

Correcting bias on the edges of particle tracking detectors

Peter Voerman

Nikhef
May 24, 2024

In this presentation, I will discuss the following questions:

- How does bias on detector edges occur?
- Does the bias show up in simulations?
- Is it possible to find a function that fits the bias?
- Can this function be used to correct the bias?

Simulation setup

- Based on a Timepix3 detector
- Consists of 256×256 pixels with a size of $55 \times 55 \mu m^{2}$
- Each track is defined by a random angle and starting position on the x-axis
- Diffusion is modeled by adding a random number from $\mathcal{N}\left(0, \sigma_{\text {diffusion }}^{2}\right)$ to the hit position

Particle track through a detector

- Close to the edge of the detector, more hits are registered on one side of the track
- This leads to biased track parameters when fitting the data

Particle track through a detector

Measurement bias

- Close to the edge of the detector, the average difference between the true and measured x-coordinates grows

Fitting the bias

- If we can find a function that fits the bias, we might be able to correct it
- Since the last part of the data looks linear, one option could be:
- $f_{\text {bias }}(x)=\max \left(0, p_{0}\left(x-p_{1}\right)\right)$

Fitting the bias

- This plot shows the same data, but with $f_{\text {bias }}(x)$ subtracted from it
- Most of the bias is removed, but some still remains

NikThef
 Fitting the bias

- Solution: add a quadratic part before the linear part

$$
-f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}
$$

NikThef
 Fitting the bias

- Solution: add a quadratic part before the linear part
- $f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$

NikThef
 Fitting the bias

- Solution: add a quadratic part before the linear part
- $f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$

NikThef
 Fitting the bias

- Now, the bias is almost completely removed
- We can use this function to correct the bias found in the track parameters

NikThef
 Track fitting

- Find the track parameters that best fit the data by minimizing χ^{2}
- $\chi^{2}=\sum_{i=1}^{N} \frac{\left(a+b y_{t, i}-x_{m, i}\right)^{2}}{\sigma_{i}^{2}}$
- To start with, the uncertainty in the y-dimension is assumed to be zero
- As more hits are close to the edge, the bias on the track parameters grows

NikThef
 Correcting the bias

- To correct the track parameter bias, $f_{\text {bias }}(x)$ is added to the χ^{2} formula
- $\chi^{2}=\sum_{i=1}^{N} \frac{\left(a+b y_{t, i}-x_{m, i}-f_{\text {bias }}\left(x_{i, j}\right)\right)^{2}}{\sigma_{i}^{2}}$

NikThef

- The true values of the x-coordinates are not known during the fit
- Extra iterations are needed to converge to the correct track parameters

- The fit converges after two extra iterations

Correcting the bias

- With measurement uncertainty in only one dimension, most of the bias can be corrected
- On average, the bias is reduced by 99.2% for the a parameter and by 99.5% for the b parameter
- In real data, there is uncertainty in both dimensions
- To take this into account, a different χ^{2} formula is needed

NikThef
 Uncertainty in both dimensions

- In real data, there is uncertainty in both dimensions
- To take this into account, a different χ^{2} formula is needed
- $\chi^{2}=\sum_{i=1}^{N} \frac{\left(\sin (\phi) x_{m, i}-\cos (\phi) y_{m, i}-d_{0}\right)^{2}}{\sigma_{i}^{2}}$
- The parameters ϕ and d_{0} denote the angle and offset of the track

Uncertainty in both dimensions

- This figure shows the average distance between the measurements and the true track as a function of the true x-coordinates
- $d=\sin \left(\phi_{t}\right) x_{m}-\cos \left(\phi_{t}\right) y_{m}-d_{0_{t}}$

NikThef
 Uncertainty in both dimensions

- The same function can be used to fit the bias
$-f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$

Correcting the bias

- Bias can now occur on the top/bottom edges as well as the left/right edges
- To correct the bias, two terms need to be added to the χ^{2} formula
- $\chi^{2}=\sum_{i=1}^{N} \frac{\left(\sin (\phi)\left(x_{m, i}-\frac{f_{\text {bias }}\left(x_{t}\right)}{\sin \left(\phi_{t}\right)}\right)-\cos (\phi)\left(y_{m, i}-\frac{f_{\text {bias }}\left(y_{t}\right)}{\cos \left(\phi_{t}\right)}\right)-d_{0}\right)^{2}}{\sigma_{i}^{2}}$
- Again, extra iterations are needed to converge to the correct track parameters
- In this case, four iterations seem to be enough

NikThef
 Correcting the bias

Nik/hef Correcting the bias

Computing the correction parameters

- $f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$

Computing the correction parameters
$-f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$
p0 as a function of sigma diffusion

p1 as a function of sigma diffusion

p2 as a function of sigma diffusion

Nikhef

Computing the correction parameters
$-f_{\text {bias }}(x)= \begin{cases}0 & \text { if } x<p_{1} \\ \frac{\left(x-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{1}<x<p_{2} \\ \frac{2\left(p_{2}-p_{1}\right)}{p_{0}}\left(x-p_{2}\right)+\frac{\left(p_{2}-p_{1}\right)^{2}}{p_{0}} & \text { if } p_{2}<x\end{cases}$

- $p_{0}\left(\sigma_{d}\right)=-0.103 \sigma_{d}+0.5$
- $p_{1}\left(\sigma_{d}\right)=-0.029 \sigma_{d}+256$
- $p_{2}\left(\sigma_{d}\right)=0.012 \sigma_{d}+256$
p 1 as a function of sigma diffusion

p0 as a function of sigma diffusion

p2 as a function of sigma diffusion

- Most of the bias can be corrected by adding an extra term to the χ^{2} formula
- The average reduction is 92.3% for the angle and 84.3% for the offset
- The correction parameters are linearly dependent on the diffusion constant
- In future research, the bias correction can be applied to different types of tracks:
- Curved tracks
- 3-dimensional tracks
- Tracks that move through multiple detectors
- These methods can then be applied to real data
- Code is available at www.nikhef.nl/~s01/tpc_bias.tar.gz

Questions?

