

Long-lived particle searches with the ILD experiment

The International Workshop on Future Linear Colliders 8-11 July 2024, University of Tokyo

LCWS2024 International Workshop on Future Linear Colliders

D. Jeans⁽¹⁾, <u>J. Klamka⁽²⁾</u>, A. F. Żarnecki⁽²⁾ ⁽¹⁾KEK, ⁽²⁾University of Warsaw

jan.klamka@fuw.edu.pl

Long-lived particles (LLPs)

Particles with macroscopic lifetimes naturally appear in numerous BSM models

Three main mechanisms are responsible for that...

1810.12602

 \rightarrow ...but they authomatically make it challenging for hadron colliders to search for LLPs

10 July 2024

International Large Detector (ILD)

- Nearly 4π angular coverage, optimised for particle flow
- Time projection chamber (TPC) as the main tracker allows for continuous tracking and dE/dx PID
- High granularity calorimeter with minimal material in front of it inside 3.5 T solenoid

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → <u>complementary region</u> could be probed at e^+e^- colliders (small masses, couplings, mass splittings)
 - \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → <u>complementary region</u> could be probed at e^+e^- colliders (small masses, couplings, mass splittings)
 - \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a <u>TPC</u> as the main tracker (almost continous tracking)

- Study such challenging signatures from the **experimental perspective**
 - \rightarrow experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

 \rightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^* \rightarrow \mu\mu$

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

ightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, ${
m Z}^*
ightarrow \mu \mu$

The opposite extreme case, (<u>large boost, high-pT final state</u>)

 \rightarrow light pseudoscalar LLP $a \rightarrow \mu \mu$

Very simple vertex finding (inside the TPC) based on a distance between track pairs

Vertex finding strategy

<u>Approach as simple and general as possible:</u>

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:

 \rightarrow use both track direction (charge) hypothesis for vertex finding

- \rightarrow consider opposite-charge track pairs only
- \rightarrow select pair with closest starting points
- Reconstruct vertex in between points of closest approach of helices

 \rightarrow Require distance < 25 mm

- Cuts for background suppression (slides 9-12) improve quality
- Vtx reconstructed from two tracks, but more tracks starting nearby are allowed

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are:

- 1.55 γγ → low-p_T hadrons events
- **O(10⁵) incoherent e⁺e⁻ pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on "hard" events

...but can also look like signal on their own

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are:

- 1.55 γγ → low-p_T hadrons events
- **O(10⁵) incoherent e⁺e⁻ pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on "hard" events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V⁰s and photon conversions)

 \rightarrow significant background

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are: e^+e^- Pairs

- 1.55 γγ → low-p_T hadrons events
- **O(10⁵) incoherent e⁺e⁻ pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on "hard" events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V⁰s and photon conversions)
 - → significant background
 - Can be suppressed using cuts on the $\boldsymbol{p}_{\scriptscriptstyle T}$ and geometry of track pair
 - Total expected reduction factor at the level of $\sim 10^{-9}$

Background from high-p_T events

The following survive overlay selection in the hard e^+e^- processes:

- Displaced decays of kaons, lambdas, photons
- Secondary tracks from interactions with detector material

They occur mainly inside jets, so we consider (hard) e^+e^- and $\gamma\gamma$ processes with jets in final state

Additional cuts on invariant mass are applied, with two working points: **standard** and **tight** (tight involving also **isolation** criterium)

Selection eff. depends on number of jets, so:

Estimate selection efficiency based on full simulation

Use qq efficiency for the remaining processes

_	$\operatorname{sgn}(P(e^{-}), P(e^{+}))$	(-,+)	(+, -)	(-,-)	(+,+)
	$\operatorname{channel}$	σ [fb]			
	qq	$127,\!966$	$70,\!417$	0	0
	qqqq	$28,\!660$	970	0	0
/	$\mathrm{q}\mathrm{q}\ell u$	$29,\!043$	261	191	191
	$ZZ \to qq\ell\ell, qq\nu\nu$	838	467	0	0
	$Z\nu_e\nu_e o qq\nu_e\nu_e$	454	131	0	0
	$\text{Zee} \rightarrow \text{qqee}$	$1,\!423$	$1,\!219$	$1,\!156$	$1,\!157$
	process	BB	BW	WB	WW
	hard $\gamma^{B/W}\gamma^{B/W}$	$42,\!150$	90,338	90,120	71,506

10 July 2024

Jan Klamka, LLP searches with the ILD experiment

Vertex finding results

- Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality) and mass of a (final state boost)
- A dedicated approach could enhance sensitivity for $\Delta m_{\text{AH}}=1$ GeV and $m_{\text{a}}=300$ MeV scenarios

10 July 2024

TIVERS,

Cross section limits

- Tight selection: dashed line, standard selection: solid line
- A wide range of models with heavy scalars with small mass splittings, or light pseudo scalar particles, can be excluded down to 0.1 fb

Alternative all-silicon ILD design

<u>Alternative ILD design</u> implemented for tests

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One **barrel layer** added and **endcap layers spacing** increased w.r.t. CLICdet
- Conformal tracking algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

 \rightarrow Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

Heavy scalars at all-silicon ILD

- <u>Vertex reconstruction</u> driven by **track reconstruction efficiency**
- Performance similar to baseline design (TPC) <u>near</u> <u>the beam axis</u>
- Smaller number of hits available → efficiency drops faster with vertex displacement
- At least 4 hits required for track reconstruction
 → limited reach
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Inclusive search for two tracks from a displaced vertex (more complex signatures allowed)

 \rightarrow a simple vertex-finding algorithm developed, with a set of cuts aimed to suppress background from the overlay events and hard SM processes

- For heavy scalars production, with small mass splittings between LLP and DM and lowmomenta decay products, good sensitivity from $\Delta m = 2$ GeV
- Reconstruction of highly boosted, light pseudoscalar decaying into muons performed with the same algorithm and procedure indicates good sensitivity for masses ≥ 1 GeV
- Estimated 95% CL limits on signal cross section indicate ILD's high reach for a wide range of lifetimes (0.003-10 m, depending on a scenario)
- Alternative ILD design used for comparison between all-silicon tracker and TPC

 \rightarrow tracking tests for heavy scalars confirm TPC can improve the reach in LLP searches

BACKUP

10 July 2024

Jan Klamka, LLP searches with the ILD experiment

Final selection – pT

- We consider $yy \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow$ had. with floating normalisations

pT of the dilepton system

pT of the dilepton system

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → **reference points should be close**
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices

- **d**_{ref} distance between reference points (TrackStates / first hits)
- d_c distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation

10 July 2024

Jan Klamka, LLP searches with the ILD experiment

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Norm = number of events, scaled by corresponding Poisson expectation values

For small correlations r between x and y, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$ (slide 5), assuming 30% correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

