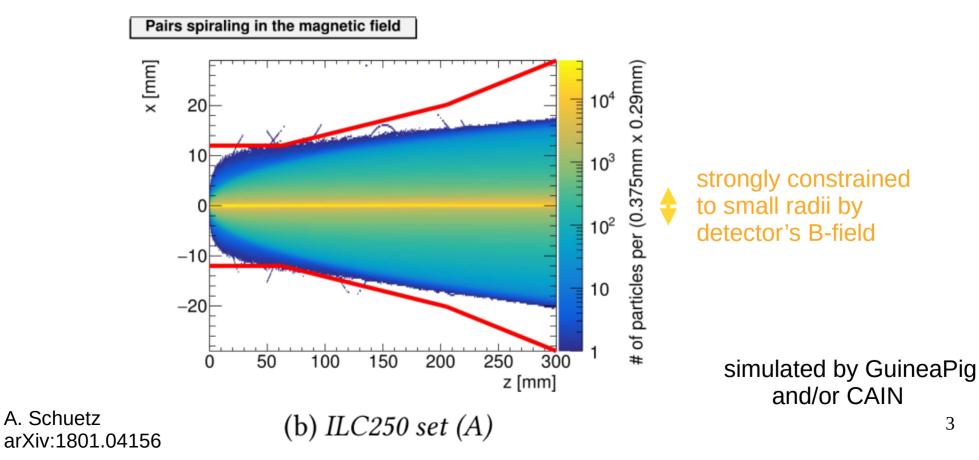
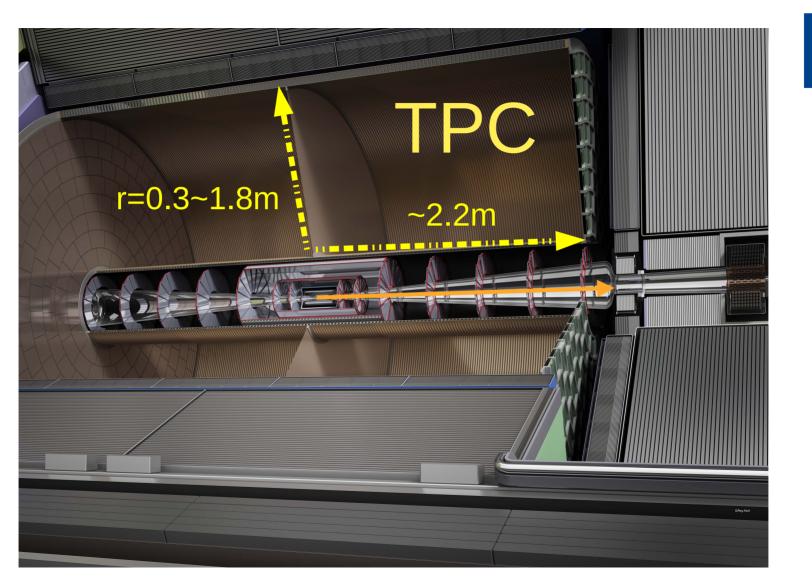
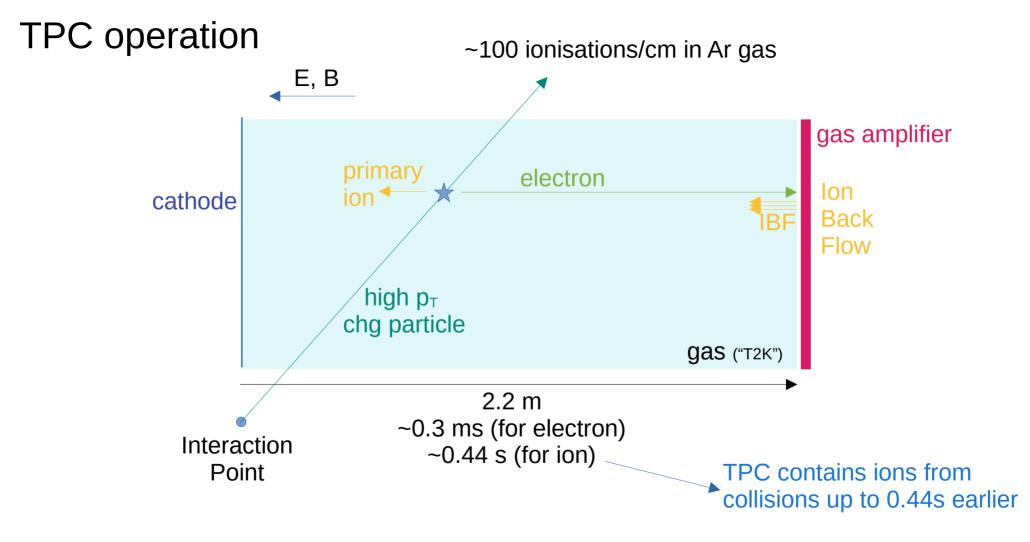

1

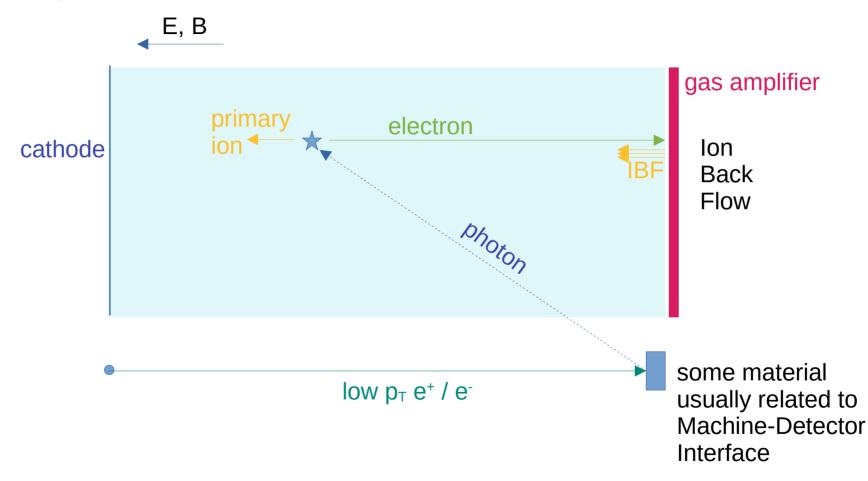
# Beamstrahlung backgrounds in ILD at linear (ILC) and circular (FCCee) colliders


Daniel Jeans / KEK


LCWS2024





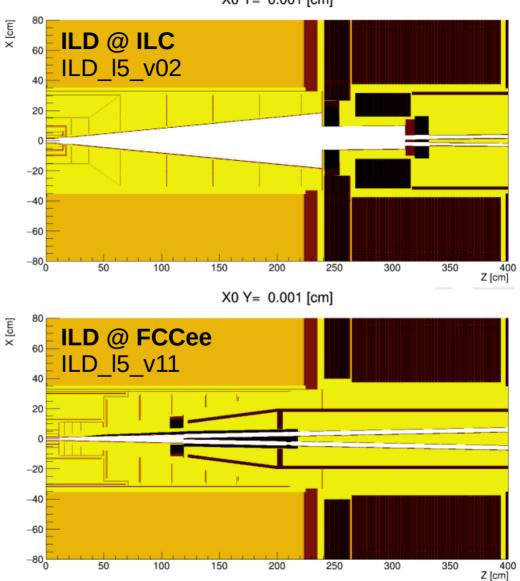


#### Beamstrahlung : many low $p_T e^+ e^-$ pairs produced in each bunch crossing



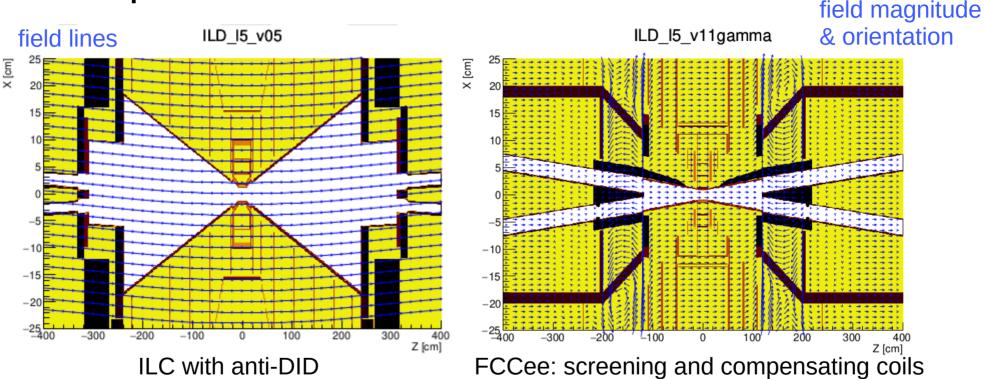




beam backgrounds : usually small  $p_T \rightarrow$  particles do not reach TPC directly




X0 Y= 0.001 [cm]


### Machine-Detector Interface

### is significantly different @ ILC and FCCee

|                                                                     | ILC          | FCCee                                               |
|---------------------------------------------------------------------|--------------|-----------------------------------------------------|
| crossing<br>angle                                                   | 14 mrad      | 30 mrad                                             |
| L* [distance from IP<br>to last accel focusing<br>quadupole magnet] | 4.1 m        | 2.0 m                                               |
| detector<br>solenoid                                                | 3.5 T        | 2.0 T                                               |
| additional<br>B-fields                                              | anti-DID (?) | <ul> <li>compensating</li> <li>screening</li> </ul> |



## field maps

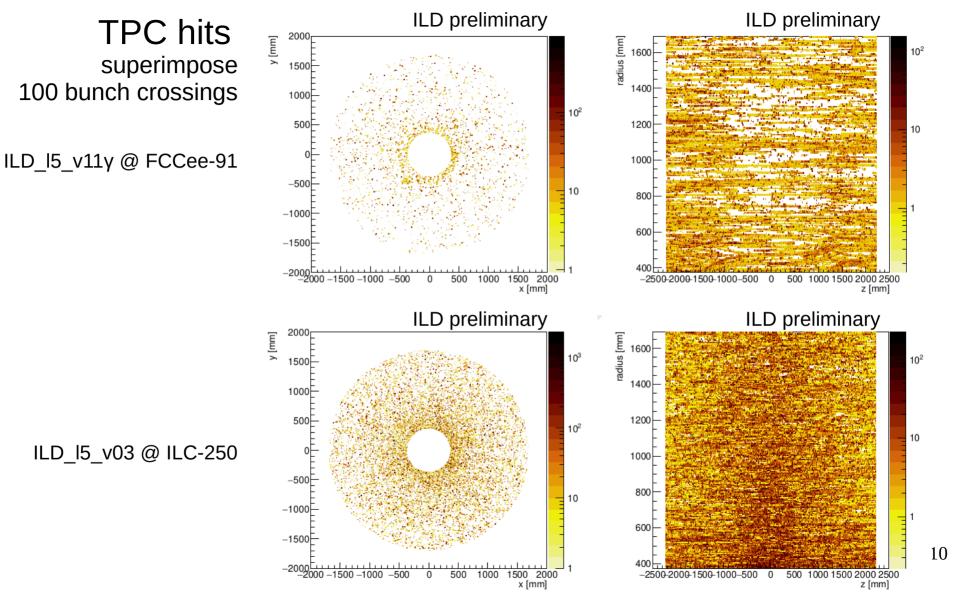


**beamstrahlung**: many very low  $p_T e+e$ - created in bunch collisions

very different bunch structure, materials and fields in the forward region  $\rightarrow$  major effect on beamstrahlung backgrounds ?

GuineaPig : program to simulate beamstrahlung

beamstrahlung pairs @ ILC-250 (from ILD/Mikael Berggren) FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)


simulate in various DD4hep ILD detector models:

using ddsim/DD4hep/Geant4

some special parameters to correctly track low  $p_T$  particles

ILD @ ILC : uniform 3.5T uniform 2.0T field map with and without anti-DID

ILD @ FCCee : uniform 2.0T field map for central region



estimate number of **primary ions** produced in the TPC per bunch crossing  $\rightarrow$  geant4 energy deposit / effective ionisation potential of Ar [26 eV]

|            |               |     | FCCee-91                       | FCCee-240   | ILC-250     |
|------------|---------------|-----|--------------------------------|-------------|-------------|
| model      | B-field [T]   | MDI | thousand ions / bunch crossing |             |             |
|            |               |     | mean $\pm$ RMS                 |             |             |
| ILD_15_v02 | 3.5 (uniform) | ILC | $6.5\pm19.9$                   | $14 \pm 14$ | $960\pm150$ |

large variations between bunch crossings

beamstrahlung much weaker @ FCCee

 $\rightarrow$  bunches less focused

estimate number of primary ions produced in the TPC per bunch crossing

|               |               |     | FCCee-91                       | FCCee-240   | ILC-250      |
|---------------|---------------|-----|--------------------------------|-------------|--------------|
| model         | B-field [T]   | MDI | thousand ions / bunch crossing |             |              |
|               |               |     | mean $\pm$ RMS                 |             |              |
| ILD_15_v02    | 3.5 (uniform) | ILC | $6.5\pm19.9$                   | $14 \pm 14$ | $960\pm150$  |
| ILD_15_v02_2T | 2.0 (uniform) | ILC | $6.9 \pm 11.1$                 | $15\pm11$   | $4700\pm300$ |

reducing field to 2T has modest effect at FCCee, large effect at ILC estimate number of primary ions produced in the TPC per bunch crossing

|               |                     |     | FCCee-91                       | FCCee-240                    | ILC-250      |
|---------------|---------------------|-----|--------------------------------|------------------------------|--------------|
| model         | B-field [T]         | MDI | thousand ions / bunch crossing |                              |              |
|               |                     |     |                                | $\text{mean} \pm \text{RMS}$ |              |
| ILD_15_v02    | 3.5 (uniform)       | ILC | $6.5\pm19.9$                   | $14 \pm 14$                  | $960\pm150$  |
| ILD_15_v02_2T | 2.0 (uniform)       | ILC | $6.9 \pm 11.1$                 | $15\pm11$                    | $4700\pm300$ |
| ILD_15_v03    | 3.5 (map)           | ILC | $5.7\pm7.9$                    | $14\pm11$                    | $1100\pm200$ |
| ILD_15_v05    | 3.5 (map, anti-DID) | ILC | $0.6 \pm 1.5$                  | $3.7\pm9.7$                  | $450\pm110$  |

anti-DID reduces TPC background by factor ~2 at ILC-250 4~10 at FCCee

|               |                     |       | FCCee-91                       | FCCee-240    | ILC-250         |
|---------------|---------------------|-------|--------------------------------|--------------|-----------------|
| model         | B-field [T]         | MDI   | thousand ions / bunch crossing |              |                 |
|               |                     |       | mean $\pm$ RMS                 |              |                 |
| ILD_15_v02    | 3.5 (uniform)       | ILC   | $6.5\pm19.9$                   | $14 \pm 14$  | $960\pm150$     |
| ILD_15_v02_2T | 2.0 (uniform)       | ILC   | $6.9 \pm 11.1$                 | $15\pm11$    | $4700\pm300$    |
| ILD_15_v03    | 3.5 (map)           | ILC   | $5.7\pm7.9$                    | $14 \pm 11$  | $1100\pm200$    |
| ILD_15_v05    | 3.5 (map, anti-DID) | ILC   | $0.6\pm1.5$                    | $3.7\pm9.7$  | $450\pm110$     |
| ILD_15_v11β   | 2.0 (uniform)       | FCCee | $390\pm120$                    | $1000\pm170$ | $110000\pm2400$ |
| ILD_15_v11γ   | 2.0 (map)           | FCCee | $270\pm100$                    | $800\pm140$  | $100000\pm1900$ |

FCCee MDI system induces ~50x increase in TPC activity compared to ILC

detailed description of field has modest effect with FCCee MDI

|               |                     |       | FCCee-91                       | FCCee-240    | ILC-250         |
|---------------|---------------------|-------|--------------------------------|--------------|-----------------|
| model         | B-field [T]         | MDI   | thousand ions / bunch crossing |              |                 |
|               |                     |       | mean $\pm$ RMS                 |              |                 |
| ILD_15_v02    | 3.5 (uniform)       | ILC   | $6.5\pm19.9$                   | $14 \pm 14$  | $960\pm150$     |
| ILD_15_v02_2T | 2.0 (uniform)       | ILC   | $6.9 \pm 11.1$                 | $15\pm11$    | $4700\pm300$    |
| ILD_15_v03    | 3.5 (map)           | ILC   | $5.7\pm7.9$                    | $14\pm11$    | $1100 \pm 200$  |
| ILD_15_v05    | 3.5 (map, anti-DID) | ILC   | $0.6\pm1.5$                    | $3.7\pm9.7$  | $450\pm110$     |
| ILD_15_v11β   | 2.0 (uniform)       | FCCee | $390\pm120$                    | $1000\pm170$ | $110000\pm2400$ |
| ILD_15_v11γ   | 2.0 (map)           | FCCee | $270\pm100$                    | $800\pm140$  | $100000\pm1900$ |

"realistic" situations : a few 100k  $\rightarrow$  1M primary ions / BX

ILC and FCCee are similar

#### **TPC integrates over many collisions**; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (~42 m<sup>3</sup>) at any time, taking account of different collision rates

number of ions ~ primary ions/BX \* BX freq \* max drift time \* 50% [some ions already reached cathode]

| Collider                                             | FCCee-91            | FCCee-240            | ILC-250            |
|------------------------------------------------------|---------------------|----------------------|--------------------|
| Detector model                                       | ILD_15_v11γ         | ILD_15_v11 $\gamma$  | ILD_15_v05         |
| average BX frequency                                 | 30 MHz              | 800 kHz              | 6.6 kHz            |
| primary ions / BX                                    | 270 k               | 800 k                | 450 k              |
| primary ions in TPC at any time                      | $1.8 	imes 10^{12}$ | $1.4 \times 10^{11}$ | $6.5 	imes 10^{8}$ |
| average primary ion charge density nC/m <sup>3</sup> | 6.8                 | 0.54                 | 0.0025             |


primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250 how does this compare to other sources of primary ionisation?

e<sup>+</sup> e<sup>-</sup> → q q @ 91 GeV : ~1 M primary ions per event @ ~50 kHz [FCCee]
 → 10<sup>10</sup> primary ions in TPC at any time
 cf. 2x10<sup>12</sup> from beamstrahlung @ FCCee-91

 $e^+ e^- \rightarrow q q @ 91 \text{ GeV}$ :

primary ions give rise to maximum drift distortions in R-phi of ~100  $\mu m$  seem stable @ few-micron level

beamstrahlung background seems ~200 times more severe than  $e^+ e^- \rightarrow q q$ 



using naive scaling, maximum distortions due to beamstrahlung (primary ions only)  $\rightarrow$  20 mm

17

n.b. only primary ions considered

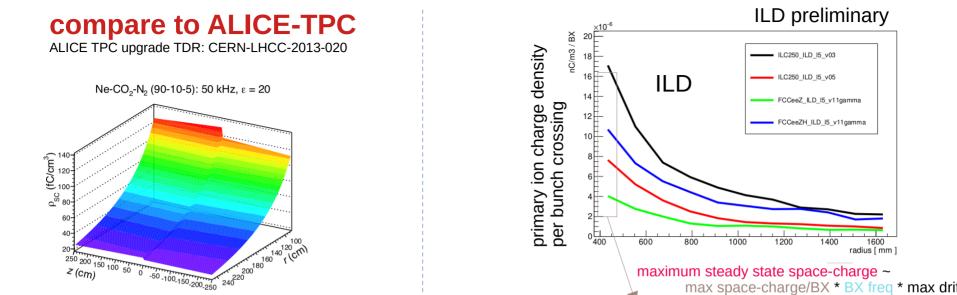
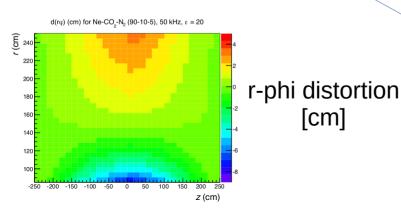
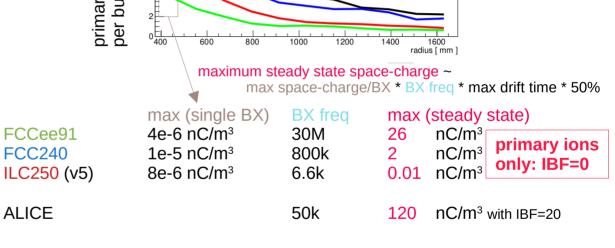





Figure 7.7: Average space charge density for Ne-CO<sub>2</sub>-N<sub>2</sub> (90-10-5),  $R_{int} = 50$  kHz and  $\varepsilon = 20$ . assumed ion back flow factor  $\varepsilon$ : 20 secondary ions / primary

```
20~120 fC/cm<sup>3</sup> \rightarrow cm-level distortions
```





TPC at FCCee91 with IBF of 3~5 → similar space-charge as at ALICE O(1~10) cm max distortions consistent with our "first-principles" estimate

#### Summary

TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee

interplay between stronger beamstrahlung @ ILC more intrusive MDI @ FCCee

average BX frequency: **4.5k times higher at FCCee**  $\rightarrow$  TPC integrates over many more BX

TPC ions from **beamstrahlung** dominate those from  $ee \rightarrow qq$  @ FCCee-91

TPC at FCCee-91 with IBF~4 looks similar to ALICE-TPC