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Abstract. In the context of the International Linear Collider, the following re-
search aims to look for the best energies for this machine to work at in order
to achieve the most precise measurements on Higgs related quantities. We will
firstly focus on the measurement of the Higgsstrahlung cross-section, by carry-
ing out a full model-independent analysis at three different energies, with the
aim to minimize the relative error on this quantity. Afterwards, we will set up,
in the framework of Effective Field Theories, a toy Lagrangian, and we will
study the precision of anomalous couplings measurements at the energy points
aforementioned. In order to do this, we will build up a chi-squared function at
each energy point and look at their contours. The chi-squared functions we will
construct exploit the new Lorentz structures present in our Lagrangian, making
use of the different angular distribution predicted by this beyond the standard
model theory, and in particular of its energy dependence. We will also take lin-
ear combinations of the three chi-squared at the various energy points, aiming
to improve our measurements by running the ILC at multiple energies in a short
energy range.

1 Introduction

In spite of the Standard Model (SM) being an extremely accurate theory, its failure at describ-
ing certain aspects of our universe (for instance the abundance of matter over anti-matter) has
made necessary a search for new physics ever since the SM was completed in 2012 with
the discovery of the Higgs boson [1, 2]. The latter in particular is one of the most singular
particles in the SM and is the one with the highest potential of hiding Beyond the Standard
Model (BSM) physics [3]. To answer this question though a much higher precision of our cur-
rent Higgs related measurements are required, leading to the birth of Higgs factories, among
which the ILC certainly represents one of the most mature ones [4]. In this paper, we aim
to improve the precision of the machine by proposing alternative beam energies close to the
current point of 250 GeV. Specifically, we will analyze three energy points:

240 GeV 250 GeV 260 GeV

and we will try to minimize the error on:

• The Higgsstrahlung cross-section, to be obtained through a model independent approach,
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• The anomalous couplings of the ZZH vertex.

As for the anomalous couplings study, we will pose ourselves in the framework of Standard
Model Effective Field Theory (SMEFT), and we will set up an effective Lagrangian:

LZZH = M2
Z(

1
v
+

a
Λ

)ZµZµh +
b

2Λ
ZµνZµνh +

b̃
2Λ

ZµνZ̃µνh (1)

We will only focus on the study of the two anomalous couplings a and b, not taking into
account the CP-odd component b̃. Looking at the contours of chi-squared functions built at
each energy point will allow us to minimize the uncertainty on the measurements. By smartly
combining these chi-squared, we will propose new scenarios where the collider would run at
a few energies in a short energy range.

For the following, an integrated luminosity of L ∼ 2000 f b−1 is assumed to be accumu-
lated using the beam configuration (Pe− , Pe+ ) = (−0.8, 0.3). The detector we will refer to is
the International Large Detector (ILD) [5].

2 Cross-Section Analysis

In this section, we are going to discuss the Higgsstrahlung cross-section analysis at the three
different energy points. In the following we will only consider tree-level diagrams. Around
250 GeV, three main processes compete for the Higgs production, namely the ZZ fusion, the
WW fusion and the Higgsstrahlung, whose Feynman diagrams are shown in Fig. 1

Figure 1. Feynman diagrams of the three main Higgs production process at the ILC250. On the left:
Higgsstrahlung. In the center: WW fusion. On the right: ZZ fusion.

As we just want to focus on the Higgsstrahlung process, we can chose an appropriate
signal, so as to kill the WW and ZZ fusion. We chose the process:

e+e− −→ µ−µ+h

which rules out the other two major processes due to leptonic flavor conservation. This
process is almost solely associated to a Higgsstrahlung process where the Z boson further
decays into a muonic pair. Another advantage of choosing this process is the very clear
experimental trace left by muons, which typically have minimal interaction in the detector
and are the only visible particle reaching the outer yoke[6]. In Fig. 3 the behavior of the
signal cross-section is shown when considering just ISR or including beamsstrahlung as well.

The background is mostly composed of processes with an even amount of fermions, due to
the initial barionic and leptonic numbers being null. The notation we will use for addressing
background will comprise of the amount of fermions in the final state (regardless of any
boson that might be generated) and of their type: leptonic (if all the fermions in the final
state are only leptons), hadronic (in case the fermions in the final state are only hadrons) and
semileptonic (for configurations comprising of both hadrons and leptons in the final state).



Our background will therefore be noted as 2f_l (final state comprising of two leptons), 4f_sl
(final state formed by two leptons and two hadrons) or 6f_h (six hadrons in the final state).
Notice that as processes with a higher amount of fermions in the final state are less probable,
so that in the following we will just focus on the 2f, 4f background.

Figure 2. Feynman diagrams for the 3 main background processes. The one on the left is a 2f_l, the
central one would be a 4f_sl or 4f_l according to whether the fermions would be a pair of hadrons or
leptons and the one on the right finally is a 4f_l process.

The common Monte-Carlo sample for ILD mc-2020 was used for the background and
signal at 250 GeV. The signal events for 240/260 GeV are generated by Whizard [7], and
then simulated and reconstructed using ILCSoft [8]. The background at all three energy
points was assumed to be the same as at 250 GeV.

Figure 3. Signal Cross-Section between 200 and 300 GeV at the ILC considering only ISR and includ-
ing beamsstrahlung as well for a e−Le+R collision, which is the dominant one in the beam configuration
(−0.8, 0.3) we are considering. For both functions, the peak is marked, and lies at higher energies.

As we aim to study the Higgsstrahlung process in a model independent approach, we are
going to use the recoil mass technique[9], which requires us to only focus on the di-lepton
system stemming from the Z boson decay. To do this, we define the recoiling mass as:

M2
rec = (

√
s − Eµ+µ− )2 − | p⃗µ+µ− |2 (2)

where Eµ+µ− stems for the energy of the di-lepton system, and p⃗µ+µ− represents the sum of
the two leptons’ momenta. The Higgsstrahlung cross-section is proportional to the amount
of signal events, following:

σZH =
NS

BR(Z → µ+µ−)εS L
(3)

so that the quantities we are required to find out are the total amount of signal events NS and
the efficiency of the signal process εS . When looking for signal events we are required to



find an appropriate muonic pair. To achieve this, we introduce an algorithm we are going
to refer to as the lepton finder[10]. The Z boson decays into two isolated leptons, meaning
they should not belong to any hadronic jet. To look for isolated leptons we are first going to
use some (pre)cuts, which can differ on whether the detected particle might be a muon or an
electron:

• ptrack > 5GeV: the momentum of the generated leptons right after the collision (and hence
in the tracker) should be quite high, given the high mass difference between the Z boson
and l±,

• [µ±] ECAL,tot/ptrack < 0.3: if the lepton we are looking at is a muon or an anti-muon, it
should have lost very little of its energy in the calorimeters; as we said earlier, they tend to
not interact in the detector and typically deposit most of their energy in the outer yoke,

• [e±] 0.5 < ECAL,tot

ptrack
< 1.3: on the other hand electrons and positrons are mostly annihilated in

the ECAL, so we require most of their momentum to be absorbed in the calorimeters,

• [µ±] Eyoke >1.2 GeV: most energetic muons, such as the ones generated by the Z decay,
should annihilate in the iron yoke, so that the energy deposited in the yoke should be non
null,

• [e±] EECAL
ECAL,tot

> 0.9: most of the energy lost in the calorimeter for an electron is absorbed in
the ECAL,

• [µ±] | d0
δd0
| < 5: the mouns should be generated close to the interaction point. d0 represents

the transversal impact parameter, whereas δd0 is the uncertainty on this measurement,

• [e±]| d0
δd0
| < 50: electron uncertainty on the transversal impact parameter is typically lower

than for muons,

• | z0
δz0
| < 5 where z0 represents the longitudinal impact parameter.

Once these precuts are applied, we look at the neighboring particles in a cone by using
a neural network, so as to make sure the leptons are indeed isolated. After this, we might
end up with no isolated lepton (indicating that neither the Z nor the Higgs decayed into a
leptonic pair) or on the other hand we might find several isolated leptons. To guard the
model independence of our measurements it is required for the muonic pair to not come from
the Higgs decay. To ensure this, every possible letpon-antilepton pair of the same flavor is
checked, and the one minimizing the following chi-squared function is chosen:

χ2(mZ ,Mrec) =
(mZ − MZ)2

σ2
mZ

+
(Mrec − MH)2

σ2
Mrec

(4)

where mZ would be the invariant mass of the di-lepton system, which should be as close as
possible to the mass of the Z boson MZ ; MH is the Higgs boson mass, whereas σ2

mZ
and

σ2
Mrec

are the standard deviations, determined by a Gaussian fit to the distributions of mZ and
Mrec; MH ∼ 125 GeV is the Higgs boson mass value. To suppress the background, we have
introduced the following cuts on kinematical variables:

• l± = µ±: we require the lepton pair found by the lepton finder to be a µ+µ− pair,

• mZ ∈ (84, 100) GeV: We require a quite tight cut on the invariant mass of the di-muon
system (this helps reduce the leptonic backgrounds, especially the 4 fermion ones),

• Evis > 10 GeV: The observed energy deposited in the detector should be higher than 10
GeV. This cut is useful for decreasing the influence of leptonic 2f_l, 4f_l comprising of
neutrinos, which are undetectable,



Table 1. Cut table for the 250 GeV energy point.

Cut NS ε S 2f_l 2f_h 4f_l 4f_sl 4f_h NB

No cuts 20616 100% 9.4 2.6 · 107 1.55 · 108 2.08 · 107 3.83 · 107 3.36 · 107 2.73 · 108

Lepton finder 19429 94.2% 9.2 1.46 · 106 5338 2.18 · 106 824257 271 4.47 · 106

l+l− = µ+µ− 19419 94.2% 13.9 1.41 · 106 43.21 325287 209695 2.15 1.95 · 106

mZ ∈ (84, 100) GeV 17425 84.5% 15.5 1.02 · 106 8.25 76712 157181 0.72 1.25 · 106

Evis > 10 GeV 17418 84.5% 16.7 841930 8.25 68265 157181 0.72 1.07 · 106

|cos(θmis)| < 0.975 15672 76% 23 290219 5.75 35940 123119 0.48 449284
mrecoil ∈ (110, 155) GeV 15579 75.5% 66 9616 1.45 10493 19954 0.48 40066

• |cos(θmis)| < 0.975: this cut allows us to suppress greatly the leptonic and semi-leptonic
background, which mostly arise from radiative return processes,

• mrec ∈ (110, 155) GeV: We only want to focus on a region close to the Higgs mass peak.

we chose these cuts so as to maximize the significance, defined as follows:

S =
NS

√
NS + NB

=
NS
√

N
(5)

which, in the assumption of Poissonian distribution, would give us a hint of the behavior of
the inverse of the relative error.

Due to the small energy range we are dealing with, two assumptions were made:

• The same cuts were made at all the three energy points, assuming the value of significance
with these cuts to be about the same when applying optimal cuts

• The background is assumed to not change with energy

Figure 4. On the left: Recoil Mass distribution at 250 GeV after cuts. On the right: Recoil Mass
distribution at all three energy points.

The relative error at all three energy points was evaluated in the assumption of indepen-
dent binning by applying the following:

∆σ

σ̄
=

1√∑nbin
i=1 S

2
i

(6)

where the single Si are the significances of the single bins. In Fig. 4, the recoil mass distribu-
tion for 250 GeV is shown on the left, whereas a comparison between all three energy points
is displayed on the right hand side. The relative statistical precision of the Higgsstrahlung
cross-section we found:

240 GeV 250 GeV 260 GeV
1.110% ± 0.001% 1.114% ± 0.001% 1.139% ± 0.001%



The highest energy point is the least precise one; this is due to the radiative energy losses
being more significant at higher energies, which causes a bigger tail for the distribution and
leads to this energy having the highest cross-section, even though the peak might be smaller.
Nonetheless, the precision at the three different energies is approximately the same and the
difference in relative error for the energy range studied for the Higgsstrahlung cross-section
is negligible. The result on the 250 GeV energy point represents already an improvement
over some previous studies carried out on the same sample[11].

3 Anomalous Couplings

The anomalous couplings of the ZZH vertex were studied in the context of SMEFT by intro-
ducing the following the following Lagrangian:

LZZH = M2
Z(

1
v
+

a
Λ

)ZµZµh +
b

2Λ
ZµνZµνh +

b̃
2Λ

ZµνZ̃µνh (7)

where:

• MZ is the Z boson’s mass,

• v ∼ 246 GeV is the Higgs boson vacuum expectation value,

• Λ ∼ 1000 GeV is the energy scale associated with the new physics; we set it to 1000 GeV
as a reference,

• a is a BSM parameter acting as an additional prefactor for the SM component of the ZZH
vertex. This anomalous coupling rescales the SM Lagrangian, and hence the cross-section,
without affecting its shape,

• Zµν = ∂µZν − ∂νZµ is the Z boson’s strength tensor. This introduces a new Lorentz structure
in the ZZH vertex, which affects cross-section shape and the angular distribution of events.
It is very important to notice that because of the partial derivation in this component, our
Lagrangian itself is now energy dependent,
• Z̃µν = ϵµνσρZσρ is the dual tensor of the Z boson,

• The anomalous coupling b is the CP-even coupling between the Higgs scalar and the Z
boson at mass-dimension 5,

• The anomalous coupling b̃ is the CP-odd coupling between the Higgs scalar and the Z
boson at mass-dimension 5.

The total cross-section arising from this Lagrangian is supposed to be a quadratic form
in both a and b. Both these two parameters affect total cross-section, so that by exclusively
studying this quantity, we would not be able to probe them both independently. In order to
experimentally study both these parameters, we can exploit the new Lorentz structure, which
affects angular distribution shape as well as total cross-section. There is different angular
variables we can use for this purpose; in the following we are going to use the Z production
angle, defined as the angle between the longitudinal direction, defined as the line along which
the colliding leptons are moving, and the the Z momentum, which is obtained by summing
the momenta of the muon and anti-muon.

The method we used was based on the construction at each energy point of the following
chi-squared function:

χ2 =

nbin∑
i=1

NS Mεi
1
σS M

dσS M
dx (xi) − NBS Mεi

1
σBS M

dσBS M
dx (xi; a, b)

∆σ(xi)


2

+

[
σS M − σBS M(a, b)
δσ · σS M

]2
= χ2

shape+χ
2
total

(8)



We have separated the chi-squared functions into contributions from the shape and from
total cross-section. The reason we want to do this involves how they affect the correlation
between a and b. In this chi-squared:

• We have taken the differential cross-section profiles and we decompose them into his-
tograms. The summation runs over all the bins composing these histograms. The his-
tograms are taken as a function of cos(θZ): the cosine of the Z boson’s production angle
with respect to the longitudinal axis,

• σS M is the total cross-section predicted by the Standard Model,

• σBS M(a, b) is the total cross-section as predicted by our toy model. Its value changes ac-
cording the values of a and b,

• δσS M is the relative error we experimentally find when measuring our cross-section,

• ∆σ(xi) is the standard deviation associated with the specific bin. For each bin in the differ-
ential cross-section histogram, we have plotted the associated recoil mass distribution and
evaluated its error by applying Eq. 6,

• NS M is the amount of events as predicted by the SM (namely σS M · L),

• NBS M is the amount of events as predicted by the BSM theory σBS M · L,

• 1
σ

dσ
dx represent the normalized differential cross-section for SM and BSM case. We want

to normalize it so as to decouple the shape contribution and the total cross-section contri-
bution,

• εi = ( Na f ter cuts

Nbe f or cuts
)i is the bin-by-bin efficiency of the signal, it basically represents the sensi-

tivity our detector has in a specific direction. We obtained these values by taking the ratio
of signal events before and after cuts. Other than those cuts, we have introduced a new
cut requiring at least 3 particles in the Higgs decay. This cut works on a parameter related
to jet shower reconstruction and it helps us suppress the semileptonic background. As it
affects the efficiency of different Higgs decay modes we could have not used it during our
cross-section analysis, because it would have compromised the model independence, given
that most of the Higgs branching ratio comes from hadronic decays (mostly to bb̄). Be-
cause the differential cross-section does not depend on Higgs decay, adding this cut does
not compromise our analysis strategy.

We are going to use these chi-squared function by looking at the contours χ2 = 1, which
contain 68% of the total probability mass distribution and are therefore the region in the (a, b)
plane where the true values of these parameters are most likely going to lie.

The χ2
shape contribution has a quite low correlation, whereas χ2

total is highly correlated. As
the contribution from the shape increases with energy due to the newly introduced Lorentz
structure, the correlation is going to diminish with energy, making our measurements more
precise.

In order to constrain even more our measurements, we can go even further. We can
exploit the correlation at lower energies to achieve high precision measurements. Take a look
at Fig. 5. Imagine we generate a contour at a certain energy Elow (in blue in the figure).
After this we raise the energy of our collider to a higher energy Ehigh > Elow and we look
at its contour (drawn in orange in the picture). Due to the decrease in correlation, this new
contour is going to be slightly tilted compared to the other one, tending to look more like
an ellipse disposed along the axis. Now, because (a, b) do not depend on energy, their true
values will have to lie in the intersecting area, leading to a much tighter constraint of these
two parameter!

We can actually do more than just looking at the intersection area. We can build up
a new chi-squared function as a sum of the chi-squared at different energies. The region



Figure 5. Hypothetical contours at two different energies. The blue colored contour would correspond
to the energy Elow and the orange one to Ehigh. The green area is the zone where most likely the real
value of our parameters will lie.

χ2
low + χ

2
high < 1 is shown in Fig. 5 as a green area; you might notice it’s slightly smaller

than the intersection area. This happens because the singular chi-squared are non-negative
functions. Take for instance the intersection points: the value of the cumulative chi-square
here is of 2, so that they will necessarily lie further away from the contour χ2

low + χ
2
high = 1.

In the most general case we can take a linear combination of these functions, so that we
would end up with:

χ2 = c240χ
2
240 + c250χ

2
250 + c260χ

2
260 (9)

The physical meaning of these cE is sharply outlined. Each cE represent the fraction of
total (integrated) luminosity that we need to accumulate at each energy point, so that for n
energy points it follows the physical constraint

n∑
i=1

cEi = 1 ; 0 ≤ cEi ≤ 1 (10)

The final question we are then asking ourselves is: How much luminosity should we
accumulate at each energy point to obtain the best measurements of anomalous couplings?

Figure 6. Chi-Squared contours at the three energy points, expressed in GeV.

In Fig. 6 the contours at the three different energy points are shown. The results are
summerized in Table 2.



Table 2. In this table, the results for different quantities are resumed for different configuration. The
last column exposes the configuration that minimizes a specific quantity and the second-to-last column

gives us the value of that quantity at the best configuration.

χ2
240 χ2

250 χ2
260 Best (c240, c250, c260)

Correlation -0.9993 -0.9984 -0.9981 -0.9965 (0.4,0,0.6)
2∆a 1.681 1.149 1.067 0.776 (0.5,0,0.5)
2∆b 0.631 0.410 0.365 0.276 (0.4,0,0.6)
Area 0.02236 0.01477 0.01334 0.0098 (0.4,0,0.6)

The uncertainties on anomalous couplings can be improved by about about 32% by using
an appropriate combination of the three energy points! We should not be surprised that the
combination that improves the most our measurements is (c240, c250, c260) = (0.4, 0, 0.6). The
precision of our measurements is tightly linked to the intersecting area between the different
contours. As between the two energy points at 240 GeV and 260 GeV the highest relative
tilt is present, the intersecting area is minimized when considering only these two values, as
shown in both Table 2 and Fig. 6. We notice how the uncertainties on a and b are mini-
mized by two slightly different configurations. This happens because the contours tend to
tilt counterclockwise as energy rises, with the major axis of the ellipse disposed along the
a-axis; a configuration with a lower contribution from higher energy would then benefit the
measurement on a.

Other than this general case, we have also imagined a scenario where only the lower
energy points 240 GeV and 250 GeV would be available. The results in this case are exposed
in Table 3

Table 3. Results obtained for the quantities of interest when considering just the 240 GeV and 250
GeV energy points.

χ2
240 χ2

250 Best (c240, c250)
Correlation -0.9993 -0.9984 -0.9981 (0.4,0.6)
2∆a 1.681 1.149 1.042 (0.4,0.6)
2∆b 0.631 0.410 0.379 (0.4,0.6)
Area 0.02236 0.01477 0.013437 (0.4,0.6)

Here, the improvement margin is much smaller of about 7%, but still proves the validity
of the method used here and its usefulness: by decreasing our beam energy and combining
data in a smart way, we are actually able to provide much more precise results!

In both cases, the area is minimized by the same configuration that minimizes the corre-
lation, which also happens to be extremely close to most precise configuration possible.

It’s interesting to point out that in spite of this research being carried out in the context of
the ILC250 and using a specific Lagrangian, this contour method we applied here is actually
quite general and could potentially be used in several colliders, and applied to a vast set of
theories.

4 Summary

The ILC250 is supposed to work at 250 GeV, based on the theoretical peak of the Hig-
gsstrahlung process. In spite of this, when considering the collision of real beams compre-
hensive of all the satellite phenomena that can take place at a linear collider, this energy does



not necessarily provide us with the most accurate measurements. When looking at the Hig-
gsstrahlung cross-section, our results can be improved when lowering our energy, as a result
of reduction in radiative energy loss; nonetheless, the improvement we obtain by lowering of
10 GeV the center of mass energy is negligible. On the other hand, the EFT theory we have
set up during in the latter part shows a great improvement when taking our measurements at
different energies in a short range, suggesting probing new physics could actually be much
easier when considering a few energy point in a short range, instead of fixing ourselves on a
singular center of mass energy.
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