
$\tilde{\tau}$ searches at future e⁺e⁻ colliders

DESY.

T. Núñez, J. List, M. Berggren on behalf of the ILD concept group

The direct pair-production of the tau-lepton superpartner, $\tilde{\tau}$, is one of the most interesting channels to search for SUSY. Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches, featuring many advantages with respect to previous electron-positron colliders and hadron ones.

Specifically for the well-motivated small mass differences between $\tilde{\tau}$ and neutralino, accelerator and detector conditions play an important role in the study. The impact of these conditions on the $\tilde{\tau}$ -pair production sensitivity has been evaluated.

Motivation for stau searches

Studies using the full detector simulation and reconstruction procedures of the International Large Detector concept (ILD) at the International Linear Collider (ILC)

Satisfies both conditions SUSY searches are focused on: best motivated NLSP candidates and most difficult scenarios

- Two weak hypercharge eigenstates ($\tilde{\tau}_{R}, \tilde{\tau}_{L}$) not mass degenerate
- Mixing yields to the physical states $(\tilde{\tau}_1, \tilde{\tau}_2)$, the lightest one being with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
- pair produced (s-channel via Z⁰/ γ exchange, low σ since $\tilde{\tau}$ -mixing suppresses coupling to the Z⁰)
- decay to LSP and τ , implying more difficult signal identification than the other sfermions

S-channel production e^{-} γ/Z $\bar{\tau}^{-}$ $\bar{\chi}_{1}^{0}$ $\bar{\chi}_{1}^{0}$ $\bar{\chi}_{1}^{0}$ $\bar{\tau}^{+}$ $\bar{\chi}_{1}^{0}$ $\bar{\tau}^{-}$ $\bar{\mu}^{-}(e^{-})$ $\bar{\nu}_{\tau}$ $\bar{\nu}_{\tau}$ $\bar{\nu}_{\tau}$ $\bar{\nu}_{\tau}$ $\bar{\nu}_{\tau}$ $\bar{\nu}_{\tau}$

Signal events with the (visible) decay products of two τ 's being the only detectable activity

Signature:

 τ decays

- large missing energy and momentum
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- large angle between the two τ -lepton directions
- unbalanced transverse momentum
- zero forward-backward asymmetry

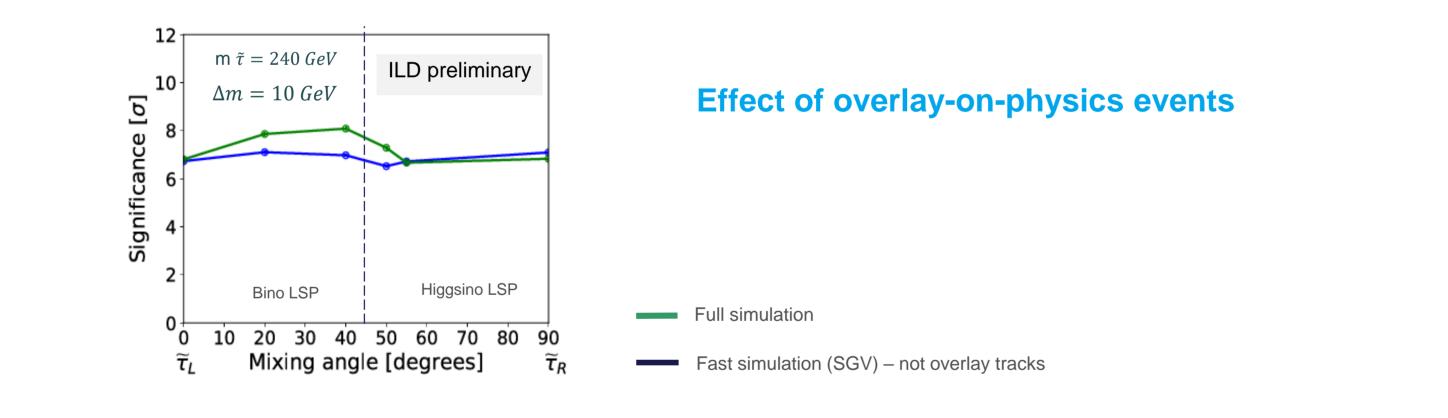
Signal reconstructed by the SGV fast simulation, beam-spectrum and photons in the beam added from the full simulated background samples

- $\sqrt{s} = 500 \text{ GeV}$ (extrapolated to 250 GeV and 1 TeV)
- Both main polarisations, P(+80%, -30%) and P(-80%, +30%), with $\mathcal{I} = 1.6 \text{ ab}^{-1} \text{ each}$ (H20 scenario)
- Including all SM and beam-induced backgrounds

Beam induced backgrounds in e⁺e⁻ colliders

e⁺e⁻ beams are accompanied by real (beamstrahlung) and virtual (Weizsäcker-Williams process) photons.

Interaction between them produce:


- e⁺e⁻ pairs (by scattering of two real photons),10⁵ pairs per bunch crossing, very low p_T (< 1GeV), curl up in magnetic field, interesting for BeamCal studies
- low p_T hadrons (by vector meson fluctuations of real or virtual photons), <1.05> events per bunch crossing at \sqrt{s} = 500 GeV, low p_T , travelling through the detector

Effect of accelerator and detector features in $\tilde{\tau}$ -pair production sensitivity

- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of ~1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the (\tilde{\tau}) mass limit only by 5 GeV

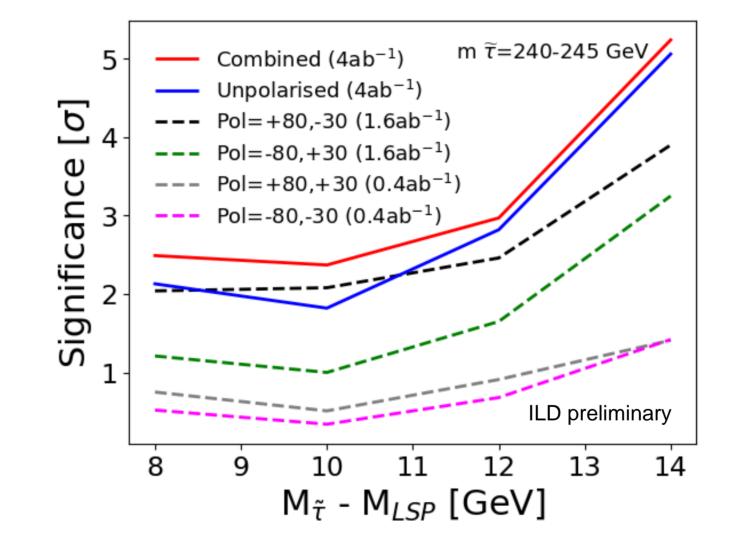
SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

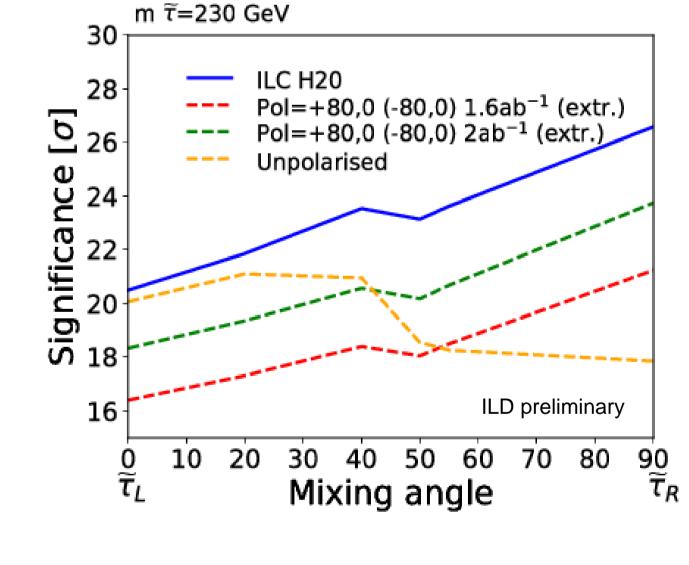
$\gamma\gamma$ interactions are independent of the e⁺e⁻ process, but can happen simultaneously to it (overlay-on-physics events) or not (overlay-only events)

Effect of overlay-only events

Overlay-only events are ~10³ times higher than any SM background included in the analysis

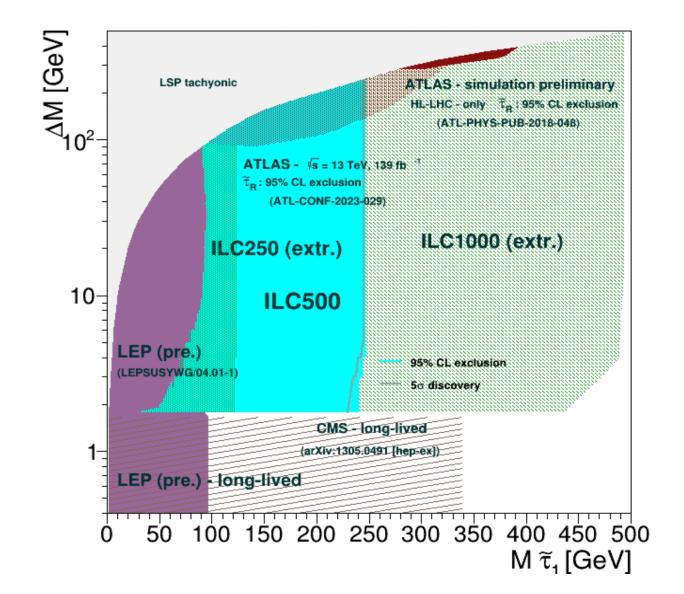
 $\gamma\gamma \rightarrow low \, pT \, hadrons \, similar$ to visible products from $\tilde{\tau}$ production for small ($\leq 10 \text{ GeV}$) LSP- $\tilde{\tau}$ mass differences

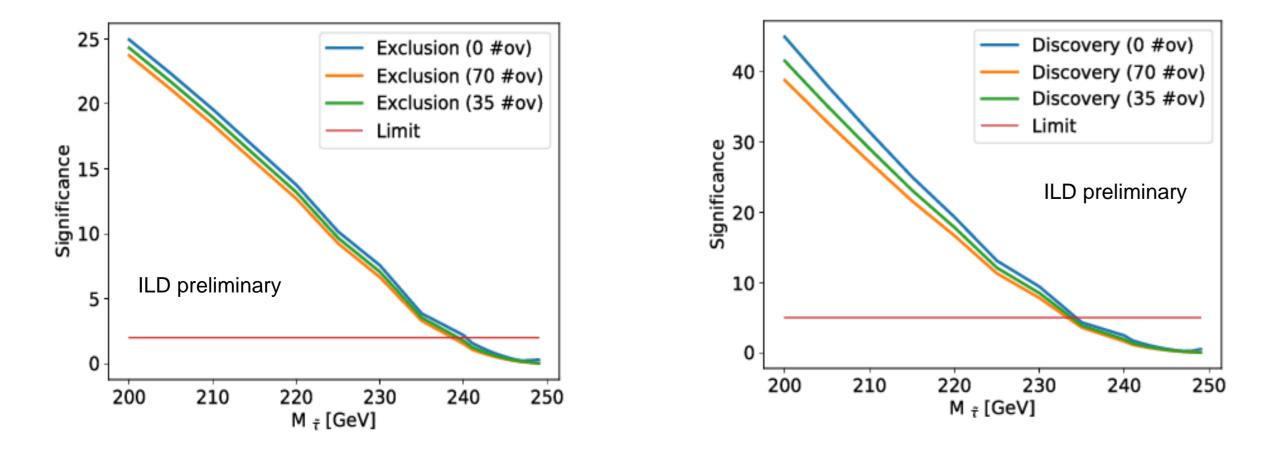

Overlay-only events can be misidentified as signal events


A suppression stronger than 10⁻⁹ is needed to make the background from overlay-only events negligible

70 (30) overlay-only events expected for each polarisation at the \triangle M = 2 (\triangle M = 10) GeV model point

For \triangle M = 2 (\triangle M = 10) GeV, remaining SM background of the order of (two orders of magnitude larger than) the remaining overlay-only events


- Hermeticity of detector crucial, with an MDI region as currently discussed for FCCee detectors, mass differences below 5 GeV very likely can not be probed
- Triggerless operation big advantage when searching for unknown signatures
- Polarisation in both beams provides more sensitivity than only in one beam or none polarisation


Limits

Current model-independent limits for $\Delta M > \tau$ mass from LEP Exclude a $\tilde{\tau}$ with mass below 26.3 GeV for any

Negligible effect for $\triangle M = 10 \text{ GeV}$

Effect for $\triangle M = 2 \text{ GeV}$:

Additional cuts based on ISR and vertex requirements needed for M= 2 GeV Results to be considered as the worst case, due to lack of statistics sets of independent cuts used to get the required suppression without killing all the overlay-only events

Contact: T. Núñez, maria.teresa-nunez.pardo.de.vera@desy.de

mixing and any $\Delta M > \tau$ mass

Limits from LHC and HL-LHC prospects highly model dependent Without discovery potential for the most wellmotivated scenarios: $\tilde{\tau}$ coannihilation or $\tilde{\tau}_R$ pair production

Even after HL-LHC $\tilde{\tau}$ -LSP mass plane almost unexplored

ILC will discover/exclude $\tilde{\tau}$'s for any $\tilde{\tau}$ - LSP mass difference and any $\tilde{\tau}$ -mixing nearly up to the kinematic limit

HELMHOLTZ ASSOCIATION