

Probing CPV mixing in the Higgs sector in VBF at 1 TeV ILC

N. Vukasinovic, I. Bozovic Jelisavcic, G. Kacarevic

on behalf of the ILD Concept Group

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

OPENING QUESTIONS/OUTLINE

- Is CP violated in Higgs interactions (with Z bosons)?
- Could 125 GeV Higgs mass eigenstate be a mixture of CP-odd and CP-even states via mixing angle $\Psi_{CP}(h_{125}=H\cdot\cos\Psi_{CP}+A\cdot\sin\Psi_{CP})$?
- $\circ~$ What is the precision to measure Ψ_{CP} in ZZ-fusion at 1 TeV ILC ?
- \circ The first fully simulated measurement in VBF at an e⁺e⁻ collider

SIGNAL AND BACKGROUND

~ 1 TeV energies are optimal due to interplay of x-section and centrality

1 TeV	σ (fb)	Expected in 8 ab ⁻¹ full range	Reconstructed with ILD			
Signal:	12	104000	$6 \cdot 10^5$ DELPHES~46 ab ⁻¹			
$e^+e^- ightarrow Hee, H ightarrow b\overline{b}$	13	20.000	3495 full sim. ~0.27 ab ⁻¹			
$e^+e^- ightarrow q\bar{q}e^+e^-$	2.4·10 ³	19·10 ⁶	2·10 ⁵			
$e^+e^- o q\overline{q}$	3.6·10 ³	29·10 ⁶	4·10 ⁵			
$e^+e^- ightarrow q \overline{q} e \nu$	3·10 ³	24·10 ⁶	2.6·10 ⁶			
$e^+e^- \rightarrow llll$	8·10 ³	64·10 ⁶	1.5·10 ⁶			
$e^+e^- ightarrow eeqqqq$	37	30·10 ⁴	1·10 ⁴			
$e^+e^- \to e\nu_e qqqq$	51	4·10 ⁵	1·10 ⁶			
$e^+e^- \to qq\nu_e ee\nu_e$	5.6	45·10 ³	5·10 ⁴			

- Unpolarized beams
- Generator level WHIZARD
 V2.8.3/UFO/Higgs characterization
 model signal and WHIZARD 1.95/SM
 background
- $\circ~$ Generator parameters are set in a way that production cross-section depends only on $\Psi_{\rm CP}$
- Higgs decays to 2 b-jets to avoid eeγ background

ANGULAR OBSERVABLE

- $\circ~$ CP-sensitive observable: angle between production planes $~\Delta \Phi~$
- $\circ \Delta \Phi$ carries the most information on the Higgs CP state [arXiv:2203.11707]

$$\Delta \Phi = \operatorname{sgn}(\Delta \Phi) \cdot \operatorname{arccos}(\overrightarrow{n}_1 \cdot \overrightarrow{n}_2)$$

$$\operatorname{sgn}(\Delta\Phi) = \frac{\overrightarrow{q}_1 \cdot (\overrightarrow{n}_1 \times \overrightarrow{n}_2)}{|\overrightarrow{q}_1 \cdot (\overrightarrow{n}_1 \times \overrightarrow{n}_2)|}$$

$$\hat{n}_{1} = \frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{|q_{e_{i}^{-}} \times q_{e_{f}^{-}}|} \qquad \hat{n}_{2} = \frac{q_{e_{i}^{+}} \times q_{e_{f}^{+}}}{|q_{e_{i}^{+}} \times q_{e_{f}^{+}}|}$$

18 – 24 July

ICHEP 2024

GENERATED AND RECONSTRUCTED SIGNAL

Measurement for the pure scalar $\Psi_{CP}=0$

- Correction for detector acceptance in polar angles
- Generated signal is well reproduced with corrected reconstructed data

• **Preselection – electron isolation**:

 $\begin{array}{c} \circ \quad m_{e^+e^-} > 200 \ {\rm GeV} \ ({\rm veto} \ {\rm HZ}) \\ \circ \quad E_{e\pm} > 60 \ {\rm GeV} \end{array} \\ \circ \quad {\rm DELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm OELPHES} \ {\rm electron} \ {\rm isolation} \\ \circ \quad {\rm oellocal} \ {\rm oellocal} \\ \circ \quad {\rm oellocal} \ {\rm oellocal} \\ \circ \quad {\rm oellocal} \ {\rm oellocal} \ {\rm oellocal} \\ \circ \quad {\rm oellocal} \ {\rm oellocal} \ {\rm oellocal} \\ \circ \quad {\rm oellocal} \ {\rm oellocal} \ {\rm oellocal} \ {\rm oellocal} \ {\rm oellocal} \\ \circ \ {\rm oellocal} \ {\rm oello$

• Background is CP insensitive

I. Bozovic

ICHEP 2024 18 – 24 July

Ο

EVENT SELECTION

• Selection cuts:

- $\circ m_{j\bar{j}} > 110 \ GeV,$
- $\circ p_{Tj_2} > 160 \, GeV,$
- $\circ N_{PFO_{1,2}} > 10,$
- Selection efficiency: 82%
- Total signal efficiency: ~ 70%
- \circ Unbiased selection w.r.t. $\Delta \Phi$
- Background is fully suppressed

ANGULAR OBSERVABLE $\Delta\Phi$ and mixing angle $\Psi_{\rm CP}$

 $\circ~$ Minimum of $\Delta \Phi$ shifts for non-zero $\Psi_{\rm CP}$

 $\circ~$ Relation between $\Psi_{\rm CP}$ and $\Delta\Phi$ has to be extracted **empirically**

I. Bozovic

ICHEP 2024 18 – 24 July

1. EXTRACTION OF ψ_{CP} FROM MIN ($\Delta\Phi)$

1. Determine position of the local minimum (b/a)

from experimental data (corrected, selected S+B):

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot cos(a \cdot \Delta \Phi - b)$

2. EXTRACTION OF ψ_{CP} FROM MIN ($\Delta \Phi$)

3. EXTRACTION OF ψ_{CP} FROM MIN ($\Delta \Phi$)

I. Bozovic IC

ICHEP 2024 18 – 24 July

PSEUDO-EXPERIMENTS

- \circ 2000 pseudo-experiments at Ψ_{CP} = 0
- Pull distribution indicates that uncertainties are correctly estimated
- Fit parameters' uncertainties give < 1 mrad systematic error

DISCUSSION AND SUMMARY

- First (simulated) measurement in VBF (HZZ vertex), accepted for publication by the Phys.Rev.D (arXiv:2405.05820)
- Realistic ILC running scenario, full background simulation of ILD detector and fast simulation of the signal
- In line with the targeted precision from theory

			(f_{CP} , 68% CL, pure scalar)							[arXiv:2205.07715v3]			
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target	
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)	
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000		
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	1.44 ·10 ⁻	5 🗸	\checkmark	\checkmark	\checkmark	$< 10^{-5}$	
$H\gamma\gamma$		0.50	\checkmark						0.06			$< 10^{-2}$	
$HZ\gamma$		~ 1	\checkmark				~ 1	_		_		$< 10^{-2}$	
Hgg	0.12	0.011	\checkmark	_	_	_	_	_	_	_	_	$< 10^{-2}$	
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark			\checkmark	$< 10^{-2}$	
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		\checkmark	\checkmark	\checkmark	$< 10^{-2}$	
$H\mu\mu$		_		—	_	_	_	_		\checkmark	_	$< 10^{-2}$	