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Deep learning with Higgs factories

 Significant part of reconstruction is “pattern recognition”
— Cut-based method should have limitation
— DNN should take more information than human-tuning

» “Big data” detector for Higgs factories
— Much more detector elements than before
— Should fit with modern network with many learning weights
— Also good for detector design
* Sensor - objects - physics
should be more seamless with deep learning technigues
— Event reconstruction is the heart of the chain
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Today's topics

All works done with ILD full simulation (plus FCCee Delphes for comparison)

Flavor tagging with Particle Particle flow with DNN
Transformer (ParT) * GNN originally developed for
» Modern DNN-based jet flavor CMS HGCAL clustering

tagging originally developed for LHC — GravNet/ Object condensation
» Much better performance than » Track-cluster matching

current algorithm (LCFIPlus(2013))  Implemented
— Reported by FCCee colleagues earlier,* Promising initial results seen

comparison done — Comparable with PandoraPFA
* Big impact on Higgs studies — Still much rooms to improve
— Including self coupling * Another trial with NLP-like

e Strange tagging, under investigation architecture (Transformer)
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Flavor tagging for Higgs factories
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e Jet flavor tagging is essentially important for
Higgs studies (including self coupling)

* LCFIPlus (published 2013)*) was long used for
flavor tagging
" b-tag: ~80% eff., 10% c / 1% uds acceptance; -t
" c-tag: ~50% eff., 10% b / 2% uds acceptance. botg?fg e%iiiegfy

* Recently FCCee reported ~10x better ParticleNet@FCCee: b/ tagging
rejection using ParticleNet (GNN) S  ctagging

* To be confirmed with full simulation
(with latest algorithm: Particle Transformer (ParT)

- If good, consider to apply to physics analyses
hopefully with common framework 2 g dhoerey
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Particle Transformer (ParT)

* Transformer: self-attention based algorithm
intensively used for NLP (e.g. chatGPT)

* Weak biasing: possible to train big samples efficiently
(with more learnable weights)
but demanding big training sample for high performance

e ParT is a new Transformer-based architecture for Jet
tagging, published in 2022[2,

e Surpasses the performance of ParticleNet

* ParticleNet (or other GNNs) only looks “neighbor” particles ‘
while Transformer judges where to look by training (b) Partci Atention Block (0 rus Atention Block

Performance on event categorization (ie. not direct flavor tagging but flavor information is essential for the categorization)
All classes H—sbb H-—scc H-—gg H—4q » Lrqc t—bggd t—blv W —=q¢ Z—qq
Accuracy AUC  Rejsq,  Rejsg,  Rejso0,  Rejsgy J90% Rejso,  Rejgg s, Rejsoq Rej509

PFEN 0.772 0.9714 2924 841 75 198 197 72 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 94’ 2907 241 204

ParticleNet 0.844 0.9849 7634 2475 104 954 333¢ 10526 347 283
ParT 0.861 0.9877 10638 4149 123 1864 : 32787 543 402

ParT (plain) 0.849 0.9859 9569 2911 112 1185 386 17699 384 311




Comparison between regular Transformer and Particle Transformer

. Class
~ | Attention
Block Block

Particles =

Add & Norm

Masked
Multi-Head Multi-Head
Attention Attention

Input Output
Embedding Embedding

Inputs

(b) Particle Attention Block (¢) Class Attention Block

Regular Transformer Particle Transformer
MHA — MultiHeadAttention
Note: { P-MHA — Augmented version of MHA by Particle Transformer that
involves Interactions Embeddings instead of Positional Embeddings



Data Used For Investigation

e |LD full simulation:
g = b,c,uds

1. e+e- —qq (at 91 GeV) V = neutrino

(DBD sample used for initial LCFIPlus study)
2. e+ e- — vwvH —vvqgq (at 250 GeV)
(2020 production, process ID: 410001-410006) THE EuROPEN

hutps://dot.org/10.1140/epjc/s10052-022-10609-1 PHYSICAL JOURNAL C
With 1M jets (500k events) each

Regular Article - Experimental Physics

Jet flavour tagging for future colliders with fast simulati

Franco Bedeschi'?, Loukas Gouskos>, Michele Selvagg
VINFN Sezione di Pisa, Pis:
2 CERN, 1211 Gen

* FCCee fast simulation (Delphes with IDEA detector): SRR e e e sy

Abstract Jet flavour identification algorithms are of A.2 Randomization . . .

paramount importance to maximise the phy potential of ~ References. . . ... ...
e+ e- — vvH —vvqq (at 240 GeV ke o

of parti 1 " . 1 Introduction

jet flavour identificz -
on measurements of standard model (SM) parameters
track parame

W : : o N . o A are key objectives of the phy am of future lepton and
ith 10M jets 5M events) eac : seom bt R T
0 2 for particle identi- ) )

S ’ ; nd charm (c) quarks, and glu-

> coupling [14] and the precise

characterisation of top quark properties, such as the top quark
mass [15] and its electroweak couplings [16,17] require an
efficient reconstruction and identification of hadronic final
states. Being able to efficiently identify the flavour of the par-
ton that initiated the formation of a jet, known as jet flavour

g y loss infor-
mation have been implemented. A jet flavour identification
algorithm based on a graph neural network architecture and

exploiting all available particle level informa as been
developed. The impact of different detector design assump-
tions on the flavour tagging performance is assessed using
the FCC-ce IDEA detector prototype.

* 80% are used for training, 5% for validation, 15% for test _ ) : _
https://link.springer.com/article/10.1140/epj

c/s10052-022-10609-1



https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Input variables

impact

- Features (for each track/neutral) parameter

- Impact Parameter (6): Distance between primary vertex
and track (2D/3D)

Particle ID (6) : Each particle's character is expressed as
O or 1. (e, mu, charged hadron, gamma, neutral hadron)

@ primary vertex

Kinematic (4) : particle energy/jet energy etc.

Track Errors (15) : covariant matrix

[ P-MHA

Jet Distance (2) . Distance between jet axis and each Mol )
track (2D/3D) |

. Interactions

- Kinematic variables (e.g. pt and mass) calculated from
any pair of particles are added as interactions
- Treated as bias to the attention
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Compare LCFIPlus and ParT «Lb full simulation)

. 91 GeV data from ILD was used. Performance of ParT
ILC Simulation - Unsorted Sample - 20 Epochs

. The performance is greatly ol [
improved over LCFIPlus. |
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Comparison with FCC datal?!

* Trained with same condition as ILD
data for fair comparison. (800k data
size, 20 epochs, etc.)

 FCC data has ~ 3 times the
performance compared to ILD data.

e Possible cause of the difference:
* Particle ID: too pessimistic for ILD
e Definition of some variables

ilc_nnqq_withParticlelD 100 ilc_nnqq_withParticlelD
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04 06 . . . 0.2 0.4 0.6
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* Theta, phi etc.
e Difference on full and fast sim

* Especially different on
tails of distributions

* Assumed detector resolution (?)

Data Particle | Impact Jet Track | c-bkg b-bkg
ID Parameters | Distance | Errors | acceptance @ | acceptance @
b-tag 80% eff. | c-tag 50% eff.

ILD 1.09%
(vwqq 250 GeV)

FCC 0.35%
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ILD (vwqgq 250 GeV) vs. FCC with partial variables

Observations:

800 kjet for training, 20 epochs

Plot

Particle
[»)

Parameters Distance Errors

b-bkg acceptance
@ c-tag 50% eff.

FCC

1.

2.

PID gives significant effect
on FCCee, not ILD

(due to easy PID in ILD)
Track errors are rather
harmful in FCCee
Difference on b-tag is
small with only impact
parameters (5), but still
see difference in c-tag

(of course) significantly
losing performance without
impact parameter

(but still ~ LCFIPlus)
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Sample size affects performance (FCCee sample)
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Fec - 20 Epochs Plot Index Particle Impact Jet Track Training c-bkg acceptance | b-bkg acceptance
ID Parameters | Distance | Errors Sample @ b-tag 80% eff. @ c-tag 50% eff.
b tagging .
size

800k 0.23% 0.35%

a4M 0.054% 0.20%

8M

0.4 06
Jet Tagging Efficiency

FCC_4M_20_epochs

b tagging

* Training performance significantly improved with bigger data sample size

* Training sample size change of FCC data:

800k -> 4M : 4 times better performance (b-tagging)

4M -> 8M: 5 times better performance (b-tagging)

b tagging

* This non-linearity of increase in performance should be further
investigated.

* Bigger data size of ILD should be obtained for better performance, as well
as comparison with FCC data for further investigation on its behaviour.

0.4 0.6
Jet Tagging Efficiency
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Fine tuning

Two objectives

* Pretrained with fast sim and fine-tune with full sim

* Pretrained with large central production and fine-tune with
dedicated physics samples in each analysis

b-bkg acceptance @
c-tag 50% eff.

Jet
Distance

Particle
ID

Impact
Parameters

FCC
240 GeV
(8M)

FCC

240 GeV
(8M)

ILD
250 GeV
(800K)

With Fine-
Tuning

No Fine-
Tuning

Similar
theta/phi
?

Training
Sample

w Y 1.14% 1.95%

250 GeV
(800K)

o 2.22% 2.01%

250 GeV
(800K)

o 3.79% 1.53%

91 GeV
(80k)

e Use result of 8M FCC data to train ILD 800k data

Improves performance only when setups are similar

Training of same setup (pretrain ILD 91 GeV data with ILD 250 GeV data) gives best
performance

Further investigation should be conducted on how to maximise the outcome for fine-tuning

between different data sets

13



Handling of neutral particles (input node)

Neutral's data is gathered to -9

. Neutral Particle has been set to -9 for pfoand biagSip2dVel
track among the many features | e
variables.

. To avoid embedding (linear, GELU)
mixed with Track particles, we
performed embedding separately

before training, and observed a et e
performance improvement of ~8%. black ; b, red ; c. blue ; d
£
5
Learning for ILD data Track 2 —_—
Particle 'g =
b-tag 80% eff. c-tag 80% eff. = Attention
c-bkg acceptance (%) b-bkg acceptance (%) g’ Block
Neutral % 1
Without dividing 0518 6.60 Particle — 3 — 5
E nteractions = é
Ll
Dividing and =
sl 0476 6.20
4 10

About 8%




Strange tagging

Tagging high-momentum kaon in jet is a clue to strange jets
— Contamination from g->ss give relatively low momentum

dE/dx is essential for Particle ID in ILD

— As well as ToF, but only effective in low energy tracks
(which are less important in strange tagging)

« Using newly-developed comprehensive PID
— Giving much better separation than previous PID

Kaon Particle ID (truth) ratio
4 (p>bGeV)
T pon [ 19.2% - Strange jets have
Section more Kaons
proton - Down jets have more

Pions

11

H->gg H->dd
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Progress in strange tag

0.8 efficiency
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dE/dx inside strange jets (separated by MC PID)
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Strange tagging: initial results

« Current results gives significantly worse than FCCee results
« FCCee@ s-tag 80% eff.: g eff. ~10%, light q eff. ~30%
« Partially because of worse (realistic?) assumption of
dE/dx performance at ILD
* Do not see any difference between old PID and CPID
» PID performance significantly different so unreasonable
* Under investigation...

s-tag 80% eff.

bk d-bk
Method acceptande (%) | acceptance (%)

26.5% 42.8%
25.1% 42.7%

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 17



Flavor tagging: summary and plans

 Significantly better performance of flavor tagging with ParT

— Implementation to the reconstruction framework foreseen to be
applied to real physics analysis (time scale: this autumn)

— Further optimization still possible
« Strange tagging under investigation

— (Maybe technical problem) prevents high performance
— To be fixed soon - to be used in H->ss for ECFA HF study

— Dependence on PID performance to be investigated
» Coming with various detector configurations

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 18



Particle flow with DNN: inroduqtion

P (s
SR

N

» Separation of cluster at calorimeter
— Charged or neutral cluster

» Essential for jet energy resolution

» Current algorithm: PandoraPFA
— Combination of various process
— Not easy to optimize or adding more info

associations

« CMS HGCal clustering
— Similar to ILD calo , (] i
— Good for starting point [ i B .. i ——

500 475
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PFA: clustering algorithm

* Input: position/energy/timing of each hit
 Output: virtual coordinate and 3 for each hit
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GravNet arXiv:1902.07987 Object Condensation (loss function)
arXiv:2002.03605

The virtual coordinate (S) is derived L=1L,+sc(Lg+Ly)
from input variables with simple MLP
Convolution using “distance” at S
(bigger convolution with nearer hits)
Concatenate the output with MLP

e Condensation point:
The hit with largest 3
at each (MC) cluster

« L,: Attractive potential to

the condensation point of the same cluster
AN and repulsive potential to the condensation

S = £ xV(d

; point of different clusters

e L,: Pulling up B of the condensation point
f"‘{{‘{x(ﬁ“ * L, Regression to output features

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 20




What we implemented: track-cluster matching

* PFA is essentially a problem “to subtract hits from tracks”

« HGCAL algorithm does not utilize track information
— Only calorimeter clustering exists

» Putting tracks as “virtual hits”
— Located at entry point of calorimeter Current number of
— Having “track” flag (1=track, 0=hit) parameters: ~420K
— Energy deposit = 0
* Modification on object condensation to
forcibly treat tracks as condensation points (details next page)
— Also modifying clustering algorithm to avoid double-track clusters

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 21



Object condensation and our implementation

Object condensation loss function (the function to minimize)

» Condensation point: The hit with largest 3 at each (MC) cluster
- For each MC cluster having a track,
the track is forcibly the condensation point regardless of 3

» L,: Attractive potential to the condensation point of the same cluster
and repulsive potential to the condensation point of different clusters
(no modification)

* Ly Pulling up B of the condensation point (up to 1)
(no modification, but B of tracks become spontaneously close to 1)

* L,: Regression to output features (energy etc.) > currently not used

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 22



Clustering algorithm

* Qutput of the network is position
and S of each hit = need clustering

* Hits that are within a certain
distance (td) from the highest
point assume as a cluster

» Continues clustering until all hits are
clustered or 8 of remaining hits are
below threshold (tbeta)

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 23



Our samples for performance evaluation

 |LD full simulation with SiIW-ECAL and AHCAL
— ECAL: 5 x 5 mm?, 30 layers, HCAL: 30 x 30 mm?, 48 layers

— Taus overlayed with random direction _
— Taus: good mixture
* 100k events, 10 GeV x 10 taus / event = 1 million taus of hadrons, leptons

- 1M events with variable energies produced, to be tested and photons
with some isolation

—qq (g=u, d, s) sample at 91 GeV Good for training
« ~75k events
 Official sample for PFA calibration (other energies available)

— Converted to awkward array stored in HDF5 format
* Afew 10 GB each

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 24



Event display R
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Quantitative evaluation

« Make 1-by-1 connection of MC and reconstructed cluster
— Reconstructed cluster with highest fraction of hits from the MC is taken
— Multiple reconstructed cluster may connect to one MC cluster

* Quantitative comparison with PandoraPFA

— Compared “efficiency” and “purity” of particle flow
 Efficiency : (reconstructed cluster energy that matches the MC cluster) / (MC cluster

energy)
« Purity : (reconstructed cluster energy that matches the MC cluster) / (reconstructed

cluster energy )

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 26



Example results (ntau, GNN

Efficiency :
over 90% for all particles
slightly low in pions

Purity :

over 88% for all tracks

79% for photons
merged photons?

Reasonably well
reconstructed

electron efficiency (MC energy>1 GeV)

Entries 8921
Mean 0.9939
Std Dev 0.03747

04 06 08 1
efficiency (edep_match/edep)

electron purity (MC energy>1 GeV)

Entries 8921
Mean 0.8812
Std Dev  0.2044

04 0.6 0.8 1
purity (edep_match/edep_reco)

pion efficiency (MC energy>1 GeV)

Entries 25674
Mean 0.949
Std Dev  0.1055

04 06 08 1
efficiency (edep_match/edep)

pion purity (MC energy>1 GeV)

Entries 25674
Mean 0.9537
Std Dev  0.1363

06 0.8 1
purity (edep_match/edep_reco)

photon efficiency (MC energy>1 GeV)

Entries 21128
Mean 0.9791
Std Dev 0.08324

06 08 1
efficiency (edep_match/edep)

photon purity (MC energy>1 GeV)

Entries 21128
Mean 0.7957
StdDev  0.2618

0.6 08 1
purity (edep_match/edep_reca)

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 27



Initial results (> 1 GeV)

GravNet 99.4% 95.0% 97.9% 88.1% 95.4% 79.6%

10 taus/10 taus

GravNet 91.3% 88.1% 89.8% 62.2% 81.3% 64.4%

10 taus/jets

_Gtra/yNtet 90.5% 89.7% 87.1% 65.6% 83.3% 70.9%

jets/jets

fgr;doraPFA 99.3% 94.0% 99.1% 91.8% 94.6% 97.2%
aus

PandoraPFA 80.2% 90.4% 79.0% 75.0% 90.6% 77.7%

jets

PandoraPFA 96.7% 95.5% 96.4% 97.1% 90.4% 97.7%

jets (ILCSoft)

Comparable performance on pion reconstruction on 10 taus
Still worse in photon reconstruction and reconstruction at jets

ILCSoft evaluation (using MC-cluster matching in ILCSoft) much better in PandoraPFA
Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 28




Optimization of performance

Output dimension of the coordinate Clustering parameters (td, tbeta) [
* The initial work done with output » td: radius which hits are treated g
coordinate dimension D = 2 (for visibility) as coming from the same E
 Tried D=3,4,8,16 cluster
D=3 much better than D=2  tbeta: threshold of beta
» Slight improvements on D=4, 16 to form clusters
» Degraded at D=8 (statistics?) « Scanning grid points (2D)

o tbeta =0.1, td=0.3 would be

] . . . taken (for ntaus)
Loss function (training) Model output

virtual x

electron

cTeases > z
dincrease ; 5 PandoraPFA

PandoraPFA PandoraPFA

075 08 085 09 09 1
efficiency efficiency

T efii cy

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 2



Optimized results (ntau only)

GravNet (opt.) 99.1% 96.5% 99.0% 91.8% 98.9% 97.1%
10 taus/10 taus

GravNet
10 taus/jets

GravNet
jets/jets

PandoraPFA 99.3% 94.0% 99.1% 91.8% 94.6% 97.2%

10 taus

PandoraPFA 80.2% 90.4% 79.0% 75.0% 90.6% 77.7%

jets

PandoraPFA 96.7% 95.5% 96.4% 97.1% 90.4% 97.7%
jets (ILCSoft)

Better performance on pion reconstruction while comparable performance on electron and photons

- Promising! (more results will come)

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 30



More NLP-like model: transformer

Network Architecture

Transformer

Decoder

Input Embedder Embedder

Probabilities

for particle id
Regression for
continuous

variables

Inference

| Inference

Training

Input Encoder Input Decoder

List of hits/event List of Clusters

(E)px)py’pp t?) (Charge, |id|, E,
Ry, Ny, 117)

-
o
)
<]
®
(=]
E
o
o
S
o

Planned structure for PFA

Input Decoder

<bos>

Transformer

Transformer: training relation among
o elements (hits in PFA) with

el (Multi-head) self-attention mechanism
ergy (used in GPT etc.)

erovabilics Encoder: accumulate info of
all hits/tracks by transformer
Decoder:
Input cluster info one by one
Output info of next cluster
(training) MC truth clusters
(inference) just provide <bos>
to derive first cluster, using

Linear

Multi-Head
Attention

postona o | N output as next input

Encoding

until <eos> obtained
- (Inspired by translation NN)

(shifted right)

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 31



Particle flow: summary and plans

GNN-based particle flow has possibility to replace PandoraPFA
— Performance seems exceeded for 10 tau events (tbc in jets)
— Difference on MC-truth definition to ILCSoft to be investigated

* (ILCSoft uses MCParticlesSkimmed while our method uses MCParticle collection)

Regression of cluster energy to be tried

— Necessary for complete PFA

— Jet energy resolution would be compared with PandoraPFA

Possible improvements

— Momenta of tracks currently not used (improvements of clustering possible)
— Incorporation of timing information etc.

Another new idea to “ask network the next cluster” being tried

— Still not competitive, starting from simple samples (1-2 photons)
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Overall summary

* High level reconstruction @ ILD has a lot of room to
incorporate with DNN to improve performance

— Also easier to use for detector optimization

» Flavor tagging with ParT significantly better than LCFIPlus
— To be applied to physics analysis
— Strange tagging also under investigation

 Particle flow with GNN gives competitive performance
— Still needs optimization
— Hope to replace PandoraPFA in ~a few years
— NLP-like method also being investigated

Taikan Suehara et al., ICHEP2024 @ Prague, 20 Jul. 2024, page 33
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