ILC Weekly Meeting

06.20.2024

Since last week

- Implemented a new architecture
- Currently working on optimizing time efficiency and CPU memory allocation of preprocessing phase before processing the entire dataset

New architecture

- Tries to address the potential problem of finding common embedding space for source and target to enhance attention relevance
- n decoder sub-units inside an custom decoder layer
- Only 2 sub-decoders on diagram but as many can be added as long as dim input decoder / n = dim output encoder

- 20% of the dataset (160'000 events) for 10 epochs.
- Per epoch: ~6hours

Version	Charges (%)	PDGs (%)	$E\left(\%\right)$	θ [°]	Excess
V2 4E	59.59	39.65	530	71.91	-2.124
V2 10E	59.15	43.77	496	69.98	0.072
V1	62.78	45.34	2734	72.56	16.57

Pretraining of source embedding

- Hope: to orientate model embedding towards similar space to labels embedding to achieve better performances and more efficient training.
- Encoder-only transformer to predict the number of clusters from the hits
- First layers are for self attention between tokens
- Last layers are used to extract class information into injected class tokens. Samples tokens are frozen during these class-attention processes.

To do

- Specific loss function to predict eos tokens
- Training with different fraction of dataset: 2%, 20%, 50%, 100% to compare performances of both models
- Test models with pretrained embedding for the source.
 - Only for the embedding
 - Encoder with frozen weights
 - Encoder with trainable weights