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Since last week

* Implemented a new architecture

* Currently working on optimizing time efficiency and CPU memory
allocation of preprocessing phase before processing the entire
dataset
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e 20% of the dataset Version | Charges (%) | PDGs (%) | E (%) | 6[°]
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Pretraining of source embedding

* Hope: to orientate model embedding towards
similar space to labels embedding to achieve
better performances and more efficient
training.

* Encoder-only transformer to predict the
number of clusters from the hits

* First layers are for self attention between
tokens

* Last layers are used to extract class information
into injected class tokens. Samples tokens are
frozen during these class-attention processes.
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To do

* Specific loss function to predict eos tokens

* Training with different fraction of dataset: 2%, 20%, 50%, 100% to
compare performances of both models

e Test models with pretrained embedding for the source.
* Only for the embedding
* Encoder with frozen weights
* Encoder with trainable weights



