Frank Gaede, ILCSoft Meeting, August 10, 2006

Trajectory

Extending the simple Helix
parameterization of Tracks

Frank Gaede

DESY
ILCSoft Meeting
August 10, 2006

Frank Gaede, ILCSoft Meeting, August 10, 2006

Outline

Introduction
Trajectory class proposal
Class design

Discussion
B-field
geometry
persistency

Conclusion

Frank Gaede, ILCSoft Meeting, August 10, 2006

Introduction

traditional helix approximation for charged particle
tracks is to simplistic and just wrong (sometimes)

energy loss of particle decreases r
multiple scattering changes path and direction

kinks not described at all

see talk by Benno List

B field not homegenous

helix fits are valid only locally — need more than
one, e.g. at innermost hit for vertexing and at
outermost hit for PFA

idea: introduce abstract Trajectory interface to make
it easier in the future to improve the code

Frank Gaede, ILCSoft Meeting, August 10, 2006

Proposal for Trajectory interface

{CLHEF/Vector/ThreeVector.h:> 7/ or eguivalent from MathMore library
{CLHER/Matrix / SumMatrix.h> A4oor eguivalent from MathMore library

S+ Proposal for a trajectory interface describing a charged particle path in a B field =/
class Trajectory
public:

J#k Point at path length s #/
virtual ThreeVector getPointi{double =) const = 0;

A Dirtection at path length s (dx/ds,dy/ds,dz/ds) =/
virtual Threevector getTangent(double =) const = O;

Jeek Momentum at path length s - REQUIRES B(x,y,z) */
virtual ThreeVector getMomentumidouble =) const = O;

Jeek Covariance Matrix of x,4,Z,.px,pd,pz #/
virtual HepSymMatrix getCovarianceMatrix() const = 0;

Jeek Local Helix approximation at s
virtual Helix getHelixAtidouble =) const = O;

J#x Distance vector to point s/
virtual Threevector getDistanceToPoint (const Threevector p) const = 0;

Jeek Closest intersection point with plane - (nan,nan,nan) if none =7
virtual ThreeVector getIntersectionHithPlane(Threevector n, double distance) const = 0 ;

Jeek Closest intersection point with cylinder - (nan,nan,nan) if none =/
virtual Threevector getlIntersectionWithCylinder(Threevector center,
Threevector axis,
double radius) const = 0;

iy /4 rclass

Frank Gaede, ILCSoft Meeting, August 10, 2006

Trajectory implementations

iiTrajectory

+ getPoint(s : double) : ThreeVector

+ getTangent(s : double) : ThreeVector

+ getMomentum(s : double) : ThreeVector
+ getCovarianceMatrix() : HepSymMatrix
+ getHelixAt(s : double) : Helix

+ getDistanceToPoint(p - const ThreeVector) : ThreeVector
+ getintersectionWithPlane(n : ThreeVector, distance : double) : ThreeVector
+ getintersectionWithCylinder(center : ThreeVector, axis : ThreeVector, radius : double) : ThreeVector

1tHelix

+ getD0() : float

+ getPhi() : float

+ getOmegaf) : float

+ getZ0() : float

+ getTanLambda() : float

+ getCovMatrix() : const HepSymMatrix&

+ getReferencePoint() : const float*

+ getPoint(s : double) : ThreeVector

+ getTangent(s : double) : ThreeVector

+ getMomentum(s : double) : ThreeVector

+ getCovarianceMatrix() : HepSymMatrix

+ getHelixAt(s : double) : Helix

+ getDistanceToPoint(p : const ThreeVector) : ThreeVector

+ getintersectionWithPlane(n : ThreeVector, distance : double) : ThreeVector
+ getintersectionWithCylinder(center : ThreeVector, axis : ThreeVector, radius : double)

: ThreeVector

for now only simple
helix approximation

Future
implementatio
with energy

loss

:iHelixWithEnergyLoss

+ getPoint(s - double) - ThreeVector

+ getTangent(s : double) - ThreeVector

+ getMomentum(s : double) - ThreeVector

+ getCovarianceMatrix() - HepSymMatrix

+ getHelixAt(s - double) - Helix

+ getDistanceToPoint(p : const ThreeVector) : ThreeVector

+ getintersectionlWVithFlane(n - ThreeVector, distance - double) - ThreeVector

+ getintersectionWithCylinderjcenter - ThreeVector, axis - ThreeVector, radius : double) : ThreeVector

spline fit
through n
points

::FittedTrajectory

+ getPoint(s : double) - ThreeVector

+ getTangent(s - double) - ThreeVector

+ getMomentumis : double) - ThreeVector

+ getCovarianceMatrix() - HepSymMatrix

+ getHelixAt(s - double) - Helix

+ getDistanceToPointip : const ThreeVector) : ThreeVector

+ getintersectionWithPlane (n - ThreeVector, distance - double) : ThreeVector

+ getintersectionWithCylindericenter : ThreeVector, axis - ThreeVector, radius - double) : ThreeVector

Frank Gaede, ILCSoft Meeting, August 10, 2006

B-field

computing the momentum requires the exact B-field at
a given point, e.q.:

ThreeVector b = Bfield.at(traj.getPosition(s)) ;
ThreeVector p = traj.getMomentum(s, b) ;

or need base class for fields, eg:
: : : struct ThreeVectorField{
Trajectory traj(Bfield) ; virtual 3Vec at(3Vec p) =0 ;
ThreeVector p = traj.getMomentum(s); }
ISSues:

computing momentum in arbitrary field not trivial
probably OK in almost homogenous field

makes code a bit more complicated
use z component at local point p : double b = Bfield.at(p).z() ;

advantage:

code already prepared for introduction of complete field map

Frank Gaede, ILCSoft Meeting, August 10, 2006

geometry

current geometry functions assume simplest
shapes/surfaces like planes and cylinders:
ThreeVector getintersectionWithPlane(ThreeVector n, double distance) ;

ThreeVector getintersectionWithCylinder(ThreeVector center,
ThreeVector axis, double radius) ;

this does not describe real detectors with "arbitrary
surfaces' (sagging, missalignement,...)

however even though it is in principle straight
forward to declare a more abstract interface the
implementation (computation) is not

-> stay with simple shapes for the time being !?

Frank Gaede, ILCSoft Meeting, August 10, 2006

energy loss - material

more elaborate implementations of the Trajectory
need to take energy loss into account

computation possible, provided material at every point
Is available, e.g GEAR.pointProperties

could use CGAGear, i.e. geant4 -> slow, complicated....
depends on particle mass (PID hypotheses)

Trajectory traj(Bfield, MUON) ;
need more elaborate geometry system

possibly later this year with SLAC group
for now: use simple helix !?

Frank Gaede, ILCSoft Meeting, August 10, 2006

persistency |

the current Track class in LCIO uses a Helix
parameterization

helix fits are valid only locally — need more than one, e.g.
at innermost hit for vertexing and at outermost hit for PFA

could create a Trajectory off one Helix fit:

Track™ trk = dynamic _cast<Track™ (col->getElementAt(i)) ;
Trajectory traj(Bfield, trk) ;
however extrapolation along s only valid in vicinity of
reference point

swimming only reasonable towards region where not meassured, e.g.
ThreeVector p = traj(- [s|) ; // for innermost hit (vertexing)

-> Trajectories will not be made persistent in current
LCIO/Marlin framework

Frank Gaede, ILCSoft Meeting, August 10, 2006

persistency |

In an ideal world one Trajectory would describe one
particle Track, i.e. ThreeVector x = traj(s) ; would give a
correct description of the particle path as measured and
give a reasonable extrapolation towards both ends

including proper description of momentum and cov. matrix

possibly one could interpolate between two or more helix track
fits/parameterizations

-> mathematically unclear (to me)
better to make full Trajectory persistent, e.g. by storing N
points along fitted Trajectory

how many points needed ?

momenta and covariances needed for every point ?
file size unreasonably large (DST have no hits for a reason !)

implications on LCIO Track

already long discussions on current helix parameterization

-> probably a mid-to-long term project !? 10

Frank Gaede, ILCSoft Meeting, August 10, 2006

discussion

even though making the Trajectory persistent is not so
straight forward it would be possible to have a transient
Implementation based on points (hits) during tracking
and PFA

-> |s this needed / usefull ?

the proposed interface is probably too simplistic, e.g. it
needs to be extended by errors !

possibly every quantity could come with its error matrix

-> need proper class design depending on core vector and
matrix implementation (CLHEP/MathMore/...)

should the computation of the error be optional ?
iIf so, is the default to compute or not compute the error ?

11

Frank Gaede, ILCSoft Meeting, August 10, 2006

Conclusion

as originally proposed the Trajectory class should make the
design of Track reconstruction software easier and make
the results more correct

lots of issues (previous slides)
implications and usability unclear

however currently we are working on PFA

need to extrapolate Tracks into calorimeter
need to extrapolate Tracks towards Vertices

Proposal: introduce a Trajectory interface as
presented and implement it through a simple Helix
class and take it from there !

-> this will make code more extensible for future improvements
and elaborations

your input is welcome !!

12

