2024.07.02 Risako TAGAMI¹, Taikan SUEHARA², Masaya ISHINO² 1:UTokyo, 2:UTokyo ICEPP

Application of Particle Transformer to quark flavor tagging in the ILC project

Physics fo Higgs Particle and flavor tagging ILC With more precise measurements of Higgs,

the effects of SUSY and many other new TeV physics models can be seen.

 To precisely measure the coupling constants such as $H \rightarrow bb$, cc, gg, ss, etc., the performance of **flavor tagging** needs to be improved.

$$\kappa = \frac{g_x}{g_x^{SM}} = 1 + \Delta \kappa$$
$$\Delta \kappa \sim \mathcal{O}(\frac{v^2}{\Lambda^2})$$

e.g. new physics at 1TeV

- \rightarrow expected \sim 6% offset
- \rightarrow Accuracy of about 1% required

H→bb : $\frac{LHC Run-2(precision)}{\sim 10\%}$

ILC $\sim 1\%$

Flavor tagging for Higgs factories

- For flavor tagging, the software LCFIPlus (published 2013) has been used in ILC/CLIC studies.
 - Flavor tagging using machine learning techniques (BDT)
 - b-tag: ~80%eff., 10% c / 1% uds mis-ID
 - c-tag: ~50%eff., 10% b / 2% uds mis-ID
- Recently FCCee's group reported this ~10 times better performance.
 - Flavor tagging using **ParticleNet** (GNN)
 - the dataset used was fast simulation
- Particle Transformer (ParT) research is currently being conducted by a group at the LHC
 - \rightarrow Trying to improve the performance of flavor tagging by applying **ParT** to **full simulation data of ILC**

Performance of LCFIPlus

Particle Transformer (ParT)

- ParT is a modified Transformer model for Jet research (published in 2022.)
 - Considering the nature of Jet, input the physical quantity calculated from the quaternion momentum of two particles to Multihead attention.
- ParT has surpassed the performance of ParticleNet, which has been the highest-performing (arXiv: 2202.03772) 。

Event classification for JetClass

Event	H→bb	H→cc	
Event	Rej. 50%	Rej. 50%	
Particle Net	0.013 %	0.04 %	
ParT	0.0094%	0.024%	

Application ParT for ILD datasets

Dataset

- The dataset used for this study was the ILD full simulation dataset.
 - $e+e- \rightarrow Z \rightarrow qq$ (at 91 GeV, 1M jets) (Same as used in the LCFIPlus study)
 - $e+e- \rightarrow ZH$ ($H \rightarrow qq$) (at 250 GeV, 1M jets)

training 80%, validation 5%, test 15%

q = b,c,u,d,s $\nu = neutrino$

Input variables

- Features (for each track/neutral)
 - Impact Parameter (6): Distance between primary vertex and track (2D/3D)
 - Particle ID (6) : Each particle's character is expressed as 0 or 1. (e, mu, charged hadron, gamma, neutral hadron)
 - Kinematic (4) : particle energy/jet energy etc.
 - Track Errors (15) : covariant matrix
 - Jet Distance (2) : Distance between jet axis and each track (2D/3D)

Interactions

- Several variables calculated in pairs using quaternion momentum are listed as input variables
- Add as MASK in the middle of attention

Compare LCFIPIus and ParT (ILD full simulation)

- 91 GeV data from ILD was used.
- The performance is greatly improved over LCFIPlus.

About 7.8 times

	b-tag 8	0% eff.	c-tag 80% eff.		
Method	c-bkg acceptance	uds-bkg acceptance	b-bkg acceptance	uds-bkg acceptance	
LCFIPlus	10%	1%	10%	2%	
ParT	1.29%	0.25%	1.02%	0.43%	

Strange tagging

- mainly using particle ID of the particles in the jets
- Particle ID
 - Upgrade instant ID to using CPID
 - Particles IDs : electron, muon, kaon, pion, proton

We also work on to improve the efficiency of strange jet tagging by

Particle ID (truth) ratio

- Strange jets have more Kaons
- Down jets have more Pions

CPID

- CPID improves the accuracy of PIDs a lot
- There are not much difference between H->dd and H->ss data except kaon pid and proton pid, so we think we have to make some weights on them

	t-Kaon	ss, 1 t-Pion	1GeV <p<30 t-proton</p<30 	GeV t-electron	t-muon
Kaon -	0.61	0.36	0.22	0.09	0.35
Pion -	0.07	0.33	0.13	0.08	0.19
proton -	0.26	0.19	0.54	0.08	0.12
electron -	0.04	0.06	0.05	0.73	0.03
muon -	0.02	0.05	0.06	0.02	0.32
	1	1	I	1	1

_	t-Kaon	ss, 3 t-Pion	3GeV <p<5 t-proton</p<5 	GeV t-electron	t-muon
Kaon -	0.17	0.40	0.04	0.15	0.30
Pion -	0.02	0.52	0.03	0.20	0.26
proton -	0.77	0.03	0.89	0.08	0.15
electron -	0.03	0.02	0.03	0.56	0.01
muon -	0.01	0.03	0.01	0.01	0.28
L	1		1	I	I

	t-Kaon	t-Pion	ss, 5GeV <p t-proton</p 	t-electron	t-muon
Kaon -	0.27	0.40	0.04	0.21	0.25
Pion -	0.01	0.55	0.02	0.25	0.23
proton -	0.69	0.03	0.92	0.15	0.19
electron -	0.02	0.01	0.02	0.38	0.01
muon -	0.00	0.01	0.00	0.01	0.32

Strange tagging

- The efficiency of strange tagging is below.
- The efficiencies are just too low. We are trying to investigate the reasons of them and improve the effs.

	s-tag 80% eff.			
Method	g-bkg acceptance (%)	d-bkg acceptance (%)		
Previous pid	26.5%	42.8%		
CPID	25.7%	42.7%		

Summary

- Flavor tagging is important in the search for new physics
- to the ILD dataset.
- Particle Transformer is also valid for the ILD datasets. The performance of b-tagging is 8 times better than the conventional software (LCFIPlus).

through precise measurement of Higgs. Machine learning can be used to improve performance and contribute to the search.

 In this research, Particle Transformer with higher performance for flavor tagging was developed by the LHC group and applied

We're also trying to improve strange jet tagging by using ParT.

12

Back up : Input Variables - Features

- Impact Parameter (6):
- pfcand_dxy
 pfcand_dz
 pfcand_btagSip2dVal
 pfcand_btagSip2dSig
 pfcand_btagSip3dVal
 pfcand_btagSip3dSig
 *d0/z0 and 2D/3D impact
 parameters, -9 for neutrals
- Jet Distance(2):
 - pfcand_btagJetDistVal
 - pfcand_btagJetDistSig
 - *Displacement of tracks from line passing IP with direction of jet, -9 for neutrals

- Particle ID (6):
 pfcand_isMu pfcand_isEl pfcand_isChargedHad pfcand_isGamma pfcand_isNeutralHad pfcand_type
 *Not including strangetagging related variables (TOF, dE/dx etc.)
 *Simple PID for ILD, not
 - *Simple PID for ILD, not optimal
- Kinematic (4):
 pfcand_erel_log
 pfcand_thetarel
 pfcand_phirel
 pfcand_charge
 - *Fraction of the particle energy wrt jet energy (log is taken)

 Track Errors(15): pfcand_dptdpt pfcand_detadeta pfcand_dphidphi pfcand_dxydxy pfcand_dzdz pfcand_dxydz pfcand_dphidxy pfcand_dlambdadz pfcand_dxyc pfcand_dxyctgtheta pfcand_phic pfcand_phidz pfcand_phictgtheta pfcand_cdz pfcand_cctgtheta

*Each element of covariant matrix, -9 for neutrals

Backup: Interaction variables

{ log(\Delta R) log(kt) log(z) log(inv. mass)

$$z_{ij} = \frac{pt_{min}}{pt_i + pt_j}$$

