Development of particle flow algorithm with GNN for Higgs factories

Tatsuki Murata

July 10th, 2024

LCWS 2024

Collaborators: T. Suehara (ICEPP, U. Tokyo), T. Tanabe (MI-6 Co.), L. Gray (Fermilab), P. Wahlen (IP Paris & ETHZ / internship at Tokyo)

Particle flow

- Many detectors are PFA-oriented designed
 - ▶ ILD, SiD, etc ...
- Separation of cluster at calorimeter
 - Charged or neutral cluster
- Essential for jet energy resolution
- Current algorithm : PandoraPFA
 - Pattern recognition based on the humantuned parameters
 - Combination of various process
 - ▶ Not easy to optimize/add more info.
 - ► Timing information, etc...

Two ways for particle flow

- Track-cluster matching from calorimeter hits
 - ► More freedom
 - Distance-based connection
 - More efficient
- Track-cluster matching from subclusters
 - Less input
 - Additional clustering is needed

GravNet for CMS HGCAL

CMS HGCAL

- High granular forward calorimeter for HL-LHC upgrade at CMS
- Similar to ILD calorimeter (Silicon pixel + scintillator)
 - Inspired by CALICE development
- Reconstruction at HGCAL
 - Pileup/noise separation by software
 - ▶ Numerous particles from ~200 pileups
 - Difficult to handle
 - DNN reconstruction is investigated

Network

- Input/output are obtained for each hit at calorimeter
 - Input :features at each hit (position, energy deposit, timing)
 - ► Output:

"condensation coefficient" β position of virtual coordinate (2dimention) (optional) energy, PID

GravNet and object condensation

GravNet arXiv:1902.07987

- The virtual coordinate (S) is derived from inputs with simple multilayerperceptron(MLP)
- Convolution using "distance" at S (bigger convolution with nearer hits)
- Concatenate the output with MLP

Object condensation (loss function)

$$L = L_p + s_C (L_\beta + L_V)$$

arXiv:2002.03605

- Condensation point : the hit with largest β at each MC cluster
- L_V: attractive potential to the condensation point of the same cluster and repulsive potential to the condensation point of different clusters
- L_{β} : pulling up β of the condensation point (up to 1)
- $(L_p: regression to output features)$

Modifications from CMS HGCAL algorithm

- Putting tracks as "virtual hits"
 - Locate at entry point of calorimeter (have "track" flag)
 - Energy deposit = 0
 - Forcibly treat tracks as condensation points regardless of β
 - ► β of tracks become spontaneously close to 1 due to L_{β} term in loss function

Clustering algorithm

- Hits that are within a certain distance (td) from the highest
 β point assume as a cluster
- Continues clustering until all hits are clustered or β of remaining hits are below threshold (tbeta)

Samples for performance evaluation

- ILD full simulation with SiW-ECAL and AHCAL (ILD_15_01_v02, 020301)
 - ► ECAL : $5 \times 5 \text{ mm}^2$, 30 layers HCAL : $30 \times 30 \text{ mm}^2$, 48 layers
 - Two types of samples : τ , jets(u, d, s)
 - $\triangleright \tau^{-}(10 \text{ GeV})$
 - $\blacktriangleright \tau$ has many decay modes, hadrons, leptons, and photons
 - Good for training
 - ▶ qq (q= *u*, *d*, *s*) (91 GeV)
 - Official sample for PFA calibrations
 - Converted to awkward array stored in HDF5 format

Event display

Input features Real coordinate in detector

Colored by true clusters

2024 International workshop on Future Linear Colliders

Quantitative evaluation

- Make 1-by-1 connection of MC and reconstructed cluster
 - Reconstructed cluster with highest fraction of hits from the MC is taken
 - Multiple reconstructed cluster may connect to one MC cluster
- Quantitative comparison with PandoraPFA
 - Compared "efficiency" and "purity" of particle flow
 - Efficiency : (reconstructed cluster energy that matches the MC cluster) / (MC cluster energy)
 - Purity : (reconstructed cluster energy that matches the MC cluster) / (reconstructed cluster energy)

Efficiency and purity for GNN, tau train / tau prediction

electron efficiency (MC energy>1 GeV)

 Efficiency : over 90% for all particles slightly low in pions

Purity : over 88% for all tracks 79% for photons merged photons?

Reasonably well reconstructed

photon efficiency (MC energy>1 GeV)

Efficiency and purity for GNN, tau train / qq prediction

electron efficiency (MC energy>1 GeV)

Efficiency : over 88% for all particles slightly worse than tau pred.

Purity : slightly worse in pions significantly worse in electrons/photons

pion efficiency (MC energy>1 GeV)

photon efficiency (MC energy>1 GeV)

Efficiency and purity for GNN, qq train / qq prediction

 Efficiency : similar to tau training strong to different type of events

purity : slightly better than tau training

photon efficiency (MC energy>1 GeV)

02

0.4

0.6

0.8

purity (edep_match/edep_reco)

Efficiency and purity with PandoraPFA, tau events

Efficiency and purity for pion is similar to GNN

 Pandora is better in photon reconstruction (especially in purity)

photon efficiency (MC energy>1 GeV)

Efficiency and purity with PandoraPFA, qq events

Similar performance with GNN method obtained

Inconsistency with analysis using MCcluster matching in official software (ILCSoft)

0.8

0.8

Comparison of results (>1 GeV for MC truth)

Algorithm train / test	Electron eff.	Pion eff.	Photon eff.	Electron pur.	Pion pur.	Photon pur.
taus / taus	99.4	<mark>95.0</mark>	97.9	88.1	<mark>95.4</mark>	<mark>79.6</mark>
taus / jets	91.3	88.1	89.8	62.2	81.3	64.4
jets / jets	90.5	<mark>89.7</mark>	87.1	65.6	<mark>83.3</mark>	70.9
PandoraPFA taus	99.3	<mark>94.0</mark>	99.1	91.8	<mark>94.6</mark>	97.2
PandoraPFA jets	80.2	<mark>90.4</mark>	79.0	75.0	<mark>90.6</mark>	77.7
PandoraPFA jets (ILCSoft)	96.7	95.5	96.4	97.1	90.4	97.7

- The performance of GNN is comparable to PandoraPFA at least on pions, which have less uncertainty related to MC truth definitions
- There is no tunings of hyperparameters
 - The performance of GNN could be improved by hyperparameter tuning

Comparison of results (>1 GeV for MC truth)

Algorithm train / test	Electron eff.	Pion eff.	Photon eff.	Electron pur.	Pion pur.	Photon pur.
taus / taus	99.4	<mark>95.0</mark>	97.9	88.1	<mark>95.4</mark>	<mark>79.6</mark>
taus / jets	91.3	88.1	89.8	62.2	81.3	64.4
jets / jets	90.5	<mark>89.7</mark>	87.1	65.6	<mark>83.3</mark>	70.9
PandoraPFA taus	99.3	<mark>94.0</mark>	99.1	91.8	<mark>94.6</mark>	97.2
PandoraPFA jets	80.2	<mark>90.4</mark>	79.0	75.0	<mark>90.6</mark>	77.7
PandoraPFA jets (ILCSoft)	96.7	95.5	96.4	97.1	90.4	97.7

- The performance of GNN is comparable to PandoraPFA at least on pions, which have less uncertainty related to MC truth definitions
- There is no tunings of hyperparameters
 - The performance of GNN could be improved by hyperparameter tuning

Hyperparameter tuning

- Hyper parameters
 - Training model's output dimensions
 (D = 2, two for virtual coordinate)
 - Epochs to turn on beta term in loss function
 - Clustering parameters
 - Beta threshold ($thre_{\beta} = 0.2$)
 - **Diameter threshold** ($thre_{diameter} = 0.5$)
 - ▶ etc...
- Checked output dimensions (D=2,3,4,8,16)
 - ▶ Train : 10 taus (10 GeV)
 - ▶ pred : 10 taus (10 GeV) / jets (91 GeV)

Comparison of results (>1 GeV for MC truth)

- ► For all output dimensions,
 - Pion GNN results are overcoming the PandoraPFA
 - Electron GNN results are comparable to the PandoraPFA
 - Photon GNN results are below the PandoraPFA
 - ▶ For output dimension of 4, GNN results are reaching the PandoraPFA
- ▶ Both efficiency and purity are low at D=8

19

Hyper parameter tuning (clustering)

- Grid search of parameter "tbeta" and "td" (output dimension=4)
 - tbeta : points whose beta > tbeta , candidates of a condensation point
 - td : points which distance from the highest beta point considered as the cluster
- Lower beta threshold tend to have higher purity and efficiency

pion

huiy

0.95

0.9

0.85

0.75

Summary and prospect

- Applied CMS HGCal clustering algorithm to ILD simulation
 - GravNet and object condensation
 - Virtual hit form tracker
 - Simulation samples
 - ▶ 10 τ (10 GeV) and 10 *u*, *d*, *s* (91 GeV)
- Quantitative comparison with PandoraPFA is ongoing
 - ► GNN method showed a bit worse performance in clustering calorimeter hits than PandoraPFA

Prospect

- Optimizing network/input
 - Improvement of MC truth matching
 - Input sample particle/size
 - Other hyperparameters
- Clustering method : replace by NN?

Further comparison with PandoraPFA in terms of jet energy resolutions
2024 International workshop on Future Linear Colliders

Back up

2024 International workshop on Future Linear Colliders