Optimal Collision Energy for Higgs Precision Measurements at the ILC250

ICEPP/ILANCE, 2024
ANDREA SIDDHARTA MARIA
SUPERVISED BY JUNPING TIAN

Motivation

The aim of this research is to define the optimal energies for the International Linear Collider to work at, so as to have the best accuracy on:

- Cross-Section (to be studied in a model independent approach) of the process $e^{+} e^{-} \rightarrow Z H$ (mostly Higgsstrahlung) $\sigma_{Z H}$
- Anomalous Couplings

What is ILC?

- International Linear Collider
- Works at a luminosity of $2000 \mathrm{fb}^{-1}$
- Lepton collider exploiting $e^{+} e^{-}$collisions in 2 different beam configurations

$$
\text { Polarization: } \quad P=\frac{N_{R}-N_{L}}{N_{R}+N_{L}} \Rightarrow N_{L}=\frac{1-P}{2}, N_{R}=\frac{1+P}{2}
$$

$$
\text { Luminosity: } L=\frac{1}{\sigma} \frac{d N}{d t} ; \quad N=\int \sigma \cdot L d t
$$

Radiative Energy Loss in linear colliders

- As the beams approach the collision point, they undergo some physical phenomena that decrease their energy at the moment of the collision. They're typically emitted preferentially in the longitudinal direction.

Bremsstrahlung: arising from the interaction of the beams with the detector nuclei
\square Beamstrahlung: arising from the interaction of one of the beams with the other beam

Initial State Radiation ISR

Final State Radiation FSR

Anomalous Couplings: Introduction

- We want to study the Beyond the Standard Model (BSM) behaviour of the ZZH vertex
- To do so, we'll use the framework of Standard Model Effective Field Theory (SMEFT)
- Anomalous couplings strongly depend on momenta and angular distribution

$$
\mathcal{L}_{E F T}=\mathcal{L}_{S M}+\sum_{i, d>4} \frac{c_{i}}{\Lambda^{d-4}} \mathcal{O}^{\left(d_{i}\right)}\left\{\begin{array}{l}
\Lambda-\text { new physics scale } \\
\mathcal{O}^{\left(d_{i}\right)}-\text { EFT operator of dimension } d_{i} \\
c_{i}-\text { Wilson coefficient }
\end{array}\right.
$$

$\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} h+\frac{b_{Z}}{2 \Lambda} Z_{\mu \nu} Z^{\mu \nu} h+\frac{\tilde{b}_{Z}}{2 \Lambda} Z_{\mu \nu} \tilde{Z}^{\mu \nu} h$

$$
Z_{\mu \nu}=\partial_{\mu} z_{v}-\partial_{\nu} z_{\mu}
$$

$$
\tilde{Z}_{\mu \nu}=\epsilon_{\mu \nu \sigma \rho} Z^{\sigma \rho}
$$

Anomalous Couplings: Methodology

- We'll study anomalous coupling by building a chi-squared function and looking at its contour at 1 for three different energy points
- Key idea: constructing a linear combination of the three chi-squared and studying it to determine how to get the best measurement

$$
\chi^{2}=\underbrace{\chi_{\text {shape }}^{2}}_{\sum_{i=1}^{n}\left[\frac{N_{S M} \varepsilon_{i} \frac{1}{\sigma_{S M}} \frac{d \sigma_{S M}}{d x}\left(x_{i}\right)-N_{B S M} \varepsilon_{i} \frac{1}{\sigma_{B S M}} \frac{d \sigma_{B S M}}{d x}\left(x_{i} ; a, b\right)}{\Delta \sigma\left(x_{i}\right)}\right]^{2}+\left[\frac{\sigma_{S M}-\sigma_{B S M}(a, b)}{\delta \sigma \cdot \sigma_{S M}}\right]^{2}}]
$$

$$
\chi_{2000 f b^{-1}}^{2}=c_{240} \chi_{240}^{2}+c_{250} \chi_{250}^{2}+c_{260} \chi_{260}^{2}
$$

Anomalous Couplings: Methodology

- Major issue: Correlation

- Given the linear combination $\chi_{2000 \mathrm{fb}}$, we will look a the $\chi_{2000 \mathrm{fb}}=1$ contour and try to minimize: correlation, a uncertainty, b uncertainty and area

Energy dependency of Cross-Section

Analysis Framework

- The simulation and reconstruction tools are the ones provided from ILCSoft
- The Monte Carlo samples of the different process have been generated through WHIZARD
- The model for the parton shower and hadronization is taken from PYTHIA
- Following the generation, the events are passed through an ILD (International Large Detector) simulation based on GEANT4
- The event reconstruction is performed using the Marlin framework
- The PandoraPFA algorithm is implemented for calorimeter clustering and the analysis of tracks through a particle flow approach
- The energy we've studied is 250 GeV (we plan to analyse $240,250 \mathrm{GeV}$ as well)
- We have assumed a luminosity of $2000 \mathrm{fb}^{-1}$
- The beam configuration taken into account is $\left(P_{e^{-}}, P_{e^{+}}\right)=(-0.8,0.3)$

The recoil mass technique

Signal:
$e_{L}^{-}+e_{R}^{+} \rightarrow \mu^{-}+\mu^{+}+H$

- Without assuming any specific decays for the Higgs, the recoil mass technique allows us to find with great accuracy the Higgs mass

$$
M_{r e c}^{2}=\left(\sqrt{s}-E_{l^{+} l^{-}}\right)^{2}-\left|\vec{p}_{l^{-}}+\vec{p}_{l^{+}}\right|^{2}
$$

Lepton selection

μ ID	e ID
$p_{\text {track }}>5 \quad \mathrm{GeV}$	$p_{\text {track }}>5 \quad \mathrm{GeV}$
$E_{\text {CAL,tot }} / p_{\text {track }}<0.3$	$0.5<E_{\text {CAL,tot }} / p_{\text {track }}<1.3$
$E_{\text {yoke }}<1.2 \quad \mathrm{GeV}$	$E_{\text {ECAL }} / E_{\text {CAL,tot }}>0.9$
$\left\|d_{0} / \delta d_{0}\right\|<5$	$\left\|d_{0} / \delta d_{0}\right\|<50$
$\left\|z_{0} / \delta z_{0}\right\|<5$	$\left\|z_{0} / \delta z_{0}\right\|<5$

- After several pairs are selected, an MVA-driven algorithm is used to make sure these leptons do not come from the Higgs decay. The principle of this algorithm is making sure that the invariant mass of the di-lepton system is as close as possible to the Z boson's mass.

Cross-Section Measurement

Signal:

$e^{e_{L}^{-}+e_{R}^{+} \rightarrow \mu^{-}+\mu^{+}+H}$

- After finding the best lepton pair, the background needs to be suppressed by imposing some cuts to the measured quantities. Our general rule of thumb for finding a good cut is to boost the induced significance

Due to the assumption of Poissonian distribution:

$$
\frac{\Delta \sigma}{\bar{\sigma}}=\frac{1}{\sum_{i=0}^{n \operatorname{bin}} \mathcal{S}_{i}^{2}}
$$

$$
\sigma_{Z H}=\frac{N_{s}}{B R\left(Z \rightarrow l^{+} l^{-}\right) \varepsilon_{S} L}
$$

signficance: $\mathcal{S}=\frac{S}{\sqrt{S+B}} \sim \frac{\bar{\sigma}}{\Delta \sigma}$

$$
\text { efficiency: } \varepsilon=\frac{N_{\text {after cut }}}{N_{\text {before cut }}}
$$

Aftermaths of energy loss: Radiative Return

- Depending on how much energy each particle loses, the probability of a process taking place gets higher or lower. Such a phenomenon is called radiative return. Let's look at an example

Recoil Mass for different processes at 250 GeV

SAA A B O NGis

$$
\frac{\Delta \sigma}{\bar{\sigma}} \cong 1.12 \%
$$

Cut	Signal	Signal Efficiency	Signal Significance	2f_\|	2f_h	4f_1	4f_sl	4f_h	Tołal Bkg
No cut	20616	1	9.4	$2.6 \cdot 10^{7}$	$1.55 \cdot 10^{8}$	$2.08 \cdot 10^{7}$	$3.83 \cdot 10^{7}$	$3.36 \cdot 10^{7}$	$2.73 \cdot 10^{8}$
Precuts	19429	94.2\%	9.2	$1.46 \cdot 10^{6}$	5338	$2.18 \cdot 10^{6}$	824257	271	$4.47 \cdot 10^{6}$
$l^{+} l^{-}=\mu^{+} \mu^{-}$	19419	94.2\%	13.9	$1.41 \cdot 10^{6}$	43.21	325287	209695	2.15	$1.95 \cdot 10^{6}$
$m_{z} \in(84,100)$	17425	84.5\%	15.5	$1.02 \cdot 10^{6}$	8.25	76712	157181	0.72	$1.25 \cdot 10^{6}$
$E_{v i s}>10$	17418	84.5\%	16.7	841930	8.25	68265	157181	0.72	$1.07 \cdot 10^{6}$
$\left\|\cos \left(\vartheta_{\text {mis }}\right)\right\|<0.975$	15672	76\%	23	290219	5.75	35940	123119	0.48	449284
$m_{\text {recoil }} \in(110,155)$	15579	75.5\%	66	96.2	1.45	10493	19954	0.48	40066

Recoil Mass at different energies

- Background changes are assumed negligible
- Same cuts are applied

SM and BSM angular distributions

- As seen earlier, shape is one of the best parameters to determine the structure of BSM physics

SM Differential Cross-Section

Uncertainties and efficiencies

- To calculate bin by bin uncertainties we have looked at the recoil mass distribution for each single bin evaluated the uncertainty of the resulting histogram

Cinnal at h _n with arnarimontal unnortaintioc
Recoil Mass for different processes at $250 \mathrm{GeV}(0.2<\operatorname{cosz<0.22)}$

Anomalous coupling study

Chi Square

Conclusions

Summary

In the course of this presentation we have:

- Carried on a recoil mass analysis at 250 GeV
- Extended the analysis to $240,260 \mathrm{GeV}$
- Searched for the optimal energy combination to study anomalous couplings in the ZZH vertex

To-do list

- Double-check using other tools, such as Tminuit
- Implement another energy point at 300 GeV

Thank you for the attention!

