ILD PRESENTATION 03/07

A NEW METHOD FOR MEASURING HIGGS MASS AT ILC

BERGER THOMAS SUPERVISED BY JUNPING TIAN

Higgs mass is a crucial input parameter in partial widths in $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ coupling

Very sensitive to m_{H} measurement:

$$\frac{\Delta\Gamma(H\to ZZ^*)}{\Gamma(H\to ZZ^*)} = 16 * \frac{\Delta m_H}{m_H}, \quad \frac{\Delta\Gamma(H\to WW^*)}{\Gamma(H\to WW^*)} = 14 * \frac{\Delta m_H}{m_H}$$

For a 0,1% - 0,5% precision, an uncertainty of 16-80MeV is the aim for m_{H} .

The New Method

Studied Processes are $e^+e^- \rightarrow ZH$, $Z \rightarrow \mu^+ \mu^-$ and $H \rightarrow \tau^+ \tau^-$ compared with $H \rightarrow b\overline{b}$.

Branching Ratios:

H→b5 58,2%

 $H \rightarrow \tau^+ \tau^-$ 6,3%

 $Z \rightarrow \mu^+ \mu/e^+e^-$ 3,36%

Electron Channel could also be added.

Provide a complimentary method to Recoil Mass to be used at ILC

Let 1,2 refer to Higgs decay products, p_x and p_y to Higgs' momentum, p_t to transverse momentum and ϕ , θ to angles.

Using only Transverse Momentum Conservation with p₁ and p₂:

$$\begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \frac{p_t}{\sin \phi_{12}} \begin{pmatrix} \frac{\sin(\phi - \phi_2)}{\sin(\theta_1)} \\ \frac{\sin(\phi_1 - \phi)}{\sin(\theta_2)} \end{pmatrix}' \quad p_1 \sin \theta_1 \cos \phi_1 + p_2 \sin \theta_2 \cos \phi_2 = p_x \\ p_1 \sin \theta_1 \sin \phi_1 + p_2 \sin \theta_2 \sin \phi_2 = p_y$$

Advantages:

-No energy in the resulting mass formula, only direction needed

- -Less uncertainty from Beam calibration, especially at higher energies
- -Complementary method with the Recoil Mass

Simulations

Whizard: Event Generator with ISR, Beamstrahlung and Parton showers and hadronization by with Pythia → Monte Carlo events or Truth events

GEANT4: Simulates the detectors and the detection of Truth events

PandoraPFA and LCFIPlus: Full event reconstruction with digitization, particle flow analysis, jet clustering...

Physics Analysis with ROOT

All data is computed for both of the H decay products and shown for either $\tau\tau$ or *bb*.

Relative Resolution for $\rm m_{H}$ and Absolute Resolution for angles are fitted with Gaussians with ROOT to get the errors of each channel

The distributions are similar in each cases for $b\overline{b}$ and $\tau\tau$ with the $b\overline{b}$ more peaked.

Resolution	$ heta_1$ [degree]	ϕ_1 [degree]	Δm _H [GeV]
Using bb	0,80±0,03	0,92±0,02	4,17±0,16
Using τ⁺τ⁻	0,67±0,01	0,73±0,01	4,51±0,14

With a 2000fb⁻¹ Luminosity, 100% efficiency and the $\mu\mu$ channel for Z decay,

The error
$$\partial m_H = \frac{\Delta m_H}{\sqrt{N}}$$
 is then ~20MeV for *bb* and ~100 MeV for $\tau^+\tau^-$

Cuts Applied to bb mode:

Cut 1: lepton pair must be muons with mass close to m_z at 10GeV

- Cut $2:n_{ChargedPFOs} > 3$ in each jet
- Cut 3:E_{vis}+E_{lep} >150 GeV
- Cut 4: b-likeness > 0,66
- Cut 5: Lepton pair: abs(cos) < 0,9

Cut 6:Tight cut on Higgs mass: 110<m_H^{new}<150 GeV

Process	2f_l	2t_h	4f_l	4t_h	4f_sl	BG	llh	Signal	Signf
Cross Section	12928.9	231973	15807.9	19163.2	16800.5	296728	10.31	0.66	
Events	2.60e+07	4.64e+07	3.16e+07	3.83e+07	3.36e+07	5.93e+08	20616.5	1313.27	0.846
Cut0	1.45e+06	16048.00	3.27e+06	824121.00	270.90	5.57e+06	19429.30	1221.13	0.518
Cut1	1.03e+06	31.78	82040.60	15866.10	0	1.28e+06	17449.40	1094.55	0.969
Cut2	1.03e+06	0	81438.20	2132.72	0	1.18e+06	1604.86	1062.67	1.005
Cut3	1.03e+06	0	80885.70	2132.72	0	1.14e+06	1604.62	1062.55	1.006
Cut4	369732.00	0	35189.40	528.38	0	405451.00	1437.07	954.75	1.498
Cut5	288014.00	0	20762.60	201.28	0	49765.30	1396.04	870.66	3.869
Cut6	1699.11	0	8590.98	182.62	0	10472.80	1236.30	832.15	7.826
Cut7	954.57	0	3265.98	98.82	0	4318.88	1194.68	803.74	11.230
Cut8	46.19	0	986.32	5.94	0	4275.34	667.96	627.46	15.373
	1	1	1	1	1		1	1	

Worse significance and efficiency at 48% for tau channel and σ =15

Less events because BR(ττ)= 6% but BR(bb)=58%

Fit gives: m_H=125,31± 0,072 GeV

For $\tau\tau$:

Different Cuts and more added for leptonic background:

Cut 1: lepton pair must be muons with mass close to m_z

Cut 2:n_{ChargedPFOs} <4 in each jet because τ decays to 1-prong or 3-prong

Cut 3:E_{vis}+E_{lep} >100 GeV

Cut 4: E_{vis} + E_{lep} <220 GeV

Cut 5: Lepton pair: abs(cos) < 0,9

Cut 6: At least 1 charged PFO in a jet: n_{ChargedPFOs} >0

Cut 7: Cut on System's Recoil Mass: 110<m_{recoil}<150 GeV

Cut 8:Tight cut on Higgs mass: 110<m_H^{new}<150 GeV

Possible Improvements:

12

Higgs Mass with Vertex Reconstruction for H->bb

For bb, more events where 2 vertices are found but worse performance:

σ=7,4 GeV Δm_н=242 MeV

Shift between b-jet mass and b mass. Not centered on 0 aswell.

Thank You For Your Attention