

Metrology requirements for the integrated luminosity measurement at ILC

I. Bozovic I. Smiljanic & G. Kacarevic

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia Supported through Grant No. 7699827 Project IDEAS HIGHTONE-P

July 2024

SWANA meeting

Overview

- Luminometer at ILC
- Status of FCAL R&D
- Metrology (novel study)
- Discussion

- Preparing the ECFA Focus Topics paper (arXiv:2401.07564v2 [hep-ph]) we have realized
- \Rightarrow NO METROLOGY STUDY EXISTS SINCE TESLA TIMES [LC-DET-2005-004 (2005)]
- We have performed a study at: Z-pole, 250 GeV, 500 GeV and 1 TeV

(currently under internal ILD review to be submitted to PTEP)

Low angle Bhabha scattering (LABS)

- Dominantly QED scattering at low polar angles
- BHLUMI 4.04: NLO QED corrections; higher-order QED corrections through the exclusive YFS exponentiation; No NLO EW corrections; partial implementation of schannel γ/Z exchange
- Hadronic vacuum polarization in t-channel photon exchange can be a limiting factor for the x-section precision
- More in [arXiv:2401.07564v2 [hep-ph]]

Very forward region

Luminometer

4

Luminometer prototype

- High precision in polar angle measurement (~20 μ rad)
- \Rightarrow Shower position and energy measurement on top of widely spread background
- \Rightarrow Compactness small Moliere radius
- Feasibility demonstrated by the FCAL R&D Collaboration

Impact of design and performance

External electronics

[FCAL, 2015 JINST 10 P05009]

July 2024

SWANA meeting

- 10 million low angle Bhabha scattering events using BHLUMI V4.04
- (20-200) mrad to allow events with non-collinear final state radiation to contribute
- No full detector simulation, no beam-beam effects, only FV (41-67) mrad
- s-axis, asymmetric counting (Δr=1mm)

Metrology

Metrology: What about the Beamspread?

current BES (250 GeV): $\Delta L/L < 2.10^{-4}$

Metrology

- Further on beams: axial displacement of the IP
- \Rightarrow beam synchronization

Metrology

Conclusion on metrology

parame	eter	Z-pole	$250~{ m GeV}$	$500~{ m GeV}$	1 TeV
$\Delta r_{in} \; (\mu \mathrm{m})$		20	200	200	200
$\sigma_r \ (\mathrm{mm})$		0.3	0.5	0.5	0.5
$\Delta l \ (\mathrm{mm})$		0.2	2.5	2.5	2.5
$\sigma_{x_{IP}} (\mathrm{mm})$		0.35	0.65	0.65	0.65
$\sigma_{z_{IP}} (\mathrm{mm})$		5	10	10	10.5
tilt (mrad)		14	35	35	35
$\Delta x_{IP} \ (\mathrm{mm})$		0.3	0.6	0.55	0.6
$\Delta z_{IP} \ (\mathrm{mm})$		4	8.5	8.5	9
$\Delta \tau ~(\mathrm{ps})$		13	27	27	30
$\sigma_{E_{BS}}$ (MeV)		114	500	1000	2000
$\Delta E \ ({\rm MeV})$		4.5	125	250	500
$\Delta r_{out} (\mu m)$		60	600	600	600
ΔĹ/Ĺ	3.3	6 · 10 -4	3.3 · 10 ⁻³		

- The major challenges only at the Z-pole
- Inner aperture of the luminometer relaxed with the asymmetric counting
- Position reconstruction in the first plane (300 µm) slightly below prototyped performance (440 µm); Can be resolved with a tracker plane in front of the luminometer
- Asymmetric bias in beam energies (~ 5 MeV)
- $\Delta(\sqrt{s})$ for the cross-section calculation (~ 5. 10⁻⁴)

Complement the existing results

- ILC/ILD has a past of extensive simulation studies on integrated luminosity measurement by the FCAL Collaboration
- FCAL Collaboration has demonstrated in prototype a feasibility of the compact calorimetry for the very forward region of an e⁺e⁻ collider
- Detailed simulation of effects from metrology does not identify major challenges to measure integrated luminosity with the relative precision of 10⁻³ at 250 GeV and above
- At the Z-pole: inner aperture of the luminometer relaxed to 20 μ m with asymmetric counting, beam energy asymmetry ~ 5 MeV), position reconstruction can be improved (if needed) with a tracker plane in front of the luminometer
- Input will be provided for the ECFA study on Higgs / Top / EW factories, LCWS2024 contribution, topical paper under ILD review

BACKUP

Metrology

- Metrology depends on:
 - Where is the detector (s-axis or z-axis)
 - Way of counting (LEP-style, full FV)

ILC 250 GeV s-axis ΔE - asymmetry (bias) in beam energies

LEP-style: ∆E=125 MeV

Beam-induced effects: Beamstrahlung

- An issue at linear machines (correction of the luminosity spectrum)
- Pronounced at high \sqrt{s}
- 1. Longitudinal boost can be determined from experimental data ($\theta_{I,2}$)
- 2. Effective reduction of the cross-section can be found
- 3. Correction weight $w(\beta_{coll})$ can be applied on event-by-event basis
- 4. θ measurement in the luminometer better than 20 mrad

Source of uncertainty	$\Delta L/L$ (500 GeV)	$\Delta L/L$ (1 TeV)
Beamstrahlung + ISR ¹	$-1.1 \cdot 10^{-3}$	$-0.7 \cdot 10^{-3}$
Beamstrahlung + ISR^2	$0.4 \cdot 10^{-3}$	$0.7 \cdot 10^{-3}$
1 = uncorrected, $2 = $ corrected		

[IBJ et al., 2013 JINST 8 P08012]

 $w(\beta_{coll}) =$

0 coll

Acoli

July 2024

Beam-induced effects: EMD1 and EMD2

EMD1 – p_x-kick of the initial state EMD2 – focusing of the final state

- EMD1 not quantified at ILC
- EMD2 simulation dependent correction proposed [<u>IBJ et al, 2013 JINST 8 P08012</u>, and <u>arXiv:1304.4082v3</u>]

 $\Delta \mathcal{L} / \mathcal{L} = x_{\mathcal{EMD}} \cdot \Delta \theta_{eff}$

- \$\color \overline{Lmm} \color \overline{Lmm} \color \overline{Lmm} + \color \overline
- $\Delta \theta_{eff}$ from simulation as the effective shift of luminometer due to EMD(2)
- $\Delta \theta_{eff} (1 \text{ TeV}) = 20 \ \mu \text{rad}$

At 1 TeV ILC:

- Uncorrected $\Delta \mathcal{L}/\mathcal{L} = 1.1 \cdot 10^{-3}$
- Uncertainty of the correction ~ 2.10⁻⁴

Systematic uncertainties on Moliere radius Eur. Phys. J. C (2019) 79:579

- Uncertainty of the measured efficiency of the signal identification ±0.16 mm
- Uncertainty of the particle impact position ±0.13 mm
- Misalignment of detector planes ±0.08 mm
- Uncertainty due to bad channels ±0.14 mm
- Noise uncertainty negligible
- Calibration uncertainty of 5% for the APV read-out ±0.14 mm

Beam-induced effects: EMD1 and EMD2

EMD1 – p_x-kick of the initial state EMD2 – focusing of the final state

- EMD1 quantified at CEPC
- EMD2 ongoing study

- As shown for other colliders (i.e. ILC and FCCee), the EMD1 effect on $\Delta \mathcal{L}/\mathcal{L}$ is reduced with asymmetric counting at s-axis
- x-angle effectively reduced for 140 μ rad ($\delta \alpha$), 70 μ rad per beam
- e⁺e⁻ system receives kick of ~5.8 MeV in x-direction, or ~2.9 MeV per particle in average
- p_x-kick is equivalent to a luminometer shift of ~60 μm along the x-axis
- **s-axis:** $\Delta \mathcal{L}/\mathcal{L} \approx 6.10^{-5}$ LEP-style counting, with symmetric in FV: $\Delta \mathcal{L}/\mathcal{L} \approx 4.10^{-3}$
- z-axis: $\Delta \mathcal{L}/\mathcal{L} \leq 10^{-4}$

