A Global Vision for a Linear Collider Facility

Vacuum decay Beam dump Higgs Nuclear Beam dump Dark matter Dark matter

LCWS 2024 Tokyo University July 10, 2024

LC Vision Team: T. Barklow, T. Behnke, M. Demarteau, A. Faus-Golfe, B. Foster, M. Hogan, M. Ishino, D. Jeans, B.List, <u>J.List</u>, V. Litvinenko, S. Michizono, T. Nakada, E. Nanni, M. Nojiri, M. Peskin, R. Patterson, R. Pöschl, A. Robson, D. Schulte, S. Stapnes, T.Suehera, C. Vernieri, M. Wenskat, J. Zhang

From discussion session: What makes you enthusiastic about Linear Colliders?

From discussion session & poll: Comments on LC vision

- · clear majority of responses very supporting
- some specific comments:
 - please include 2nd BDS & 2nd interaction region!
 - More cost effective, sustainable, while still retaining physics reach. More potential for beyond collider experiments e.g. strong field QED!!!
 - specify the impact to detector and physics of HALHF energy asymmetry
- some questions on the overall strategy to put forward a joint LC vision in general and for CERN:
 - how do we convince the wider particle physics community that the LC Vision of an initial-stage Higgs factory, upgradeable, is the best path for the field?
 - What do you consider a realistic "way out" of the currently "stuck" future collider situation? (FCC likely not affordable, uncertainty on CEPC, LC politics)
 - How seriously is ILC at CERN being discussed, while CERN seems currently willing to go for FCCee?

=> formulating the LC vision more precisely & coherently is a first step to address these!

From discussion session & poll: Comments on LC vision

- · clear majority of responses very supporting
- some specific comments:
 - please include 2nd BDS & 2nd interaction region!
 - More cost effective, sustainable, while still retaining physics reach. More potential for beyond collider experiments e.g. strong field QED!!!
 - specify the impact to detector and physics of HALHF energy asymmetry
- some questions on the overall strategy to put forward a joint LC vision in general and for CERN:
 - how do we convince the wider particle physics community that the LC Vision of an initial-stage Higgs factory, upgradeable, is the best path for the field?
 - What do you consider a realistic "way out" of the currently "stuck" future collider situation? (FCC likely not affordable, uncertainty on CEPC, LC politics)
 - How seriously is ILC at CERN being discussed, while CERN seems currently willing to go for FCCee?

=> formulating the LC vision more precisely & coherently is a first step to address these!

And base it on science!

e+e- Physics at a Linear Collider Facility

A physics-driven, polarised operating scenario for a Linear Collider

250 GeV, ~2ab-1:

٠

- precision Higgs mass and total ZH cross-section
- Higgs -> invisible (Dark Sector portal)
- basic ffbar and WW program
- optional: WW threshold scan
- Z pole, few billion Z's: EWPOs 10-100x better than today
- · 350 GeV, 200 fb-1:
 - precision top mass from threshold scan
- · 500...600 GeV, 4 ab-1:
 - Higgs self-coupling in ZHH
 - top quark ew couplings
 - top Yukawa coupling incl CP structure
 - improved Higgs, WW and ffbar
 - probe Higgsinos up to ~300 GeV
 - probe Heavy Neutral Leptons up to ~600 GeV

· 800...1000 GeV, 8 ab-1:

- Higgs self-coupling in VBF
- further improvements in tt, ff, WW,
- probe Higgsinos up to ~500 GeV
- probe Heavy Neutral Leptons up to ~1000 GeV
- searches, searches, searches, ...

Based on classic ILC/CLIC luminosity assumptions limited by self-allowed power budget

A physics-driven, polarised operating scenario for a Linear Collider

All e+e- colliders deliver the basic single-Higgs program

All e+e- colliders deliver the basic single-Higgs program

Full SMEFT analysis of Top Quark sector

- expected precision on Wilson coefficients for HL-LHC alone and combined with various e+e- proposals
- e+e- at high center-of-mass energy with polarised beams lifts degeneracies between operators

Full SMEFT analysis of Top Quark sector

- $\widetilde{z}.\gamma$
- expected precision on Wilson coefficients for HL-LHC alone and combined with various e+e- proposals
- e+e- at high center-of-mass energy with polarised beams lifts degeneracies between operators

full top-quark physics requires ≥ 500 GeV AND polarised beams

Implementation of a Linear Collider Facility

A Linear Collider Facility — at CERN or in Japan

• What could be the initial technology for an LCF at CERN? (Japan=ILC)

- For many years, CERN pioneered CLIC
 - from 380 GeV to 3 TeV
 - drive beam technology demonstrated

detailed design and costing => first stage can be built within CERN budget (shown in CLIC Project Implementation Plan, 2018)

However could also consider to start out with a linear collider based superconducting RF

- proven and *industrialised* technology
- strong general interest in technology around the world
- significant industrial production capacities in Europe (and elsewhere)
- strong lab expertise *outside* of CERN
 => could take significant load off CERNs
 shoulders while still busy with / paying off HL-LHC
- CERN site actually been studied for ILC TDR...

CLIC: e+e- @ 0.38, 1.5, 3 TeV Conceptual Design 2012 Updated Baseline in 2017 & 2021 for Snowmass 2-beam acceleration

A Linear Collider Facility — at CERN or in Japan

What could be the initial technology for an LCF at CERN? (Japan=ILC)

- For many years, CERN pioneered CLIC
 - from 380 GeV to 3 TeV
 - drive beam technology demonstrated
 - detailed design and costing => first stage can be built within CERN budget (shown in CLIC Project Implementation Plan, 2018)

 However could also consider to start out with a linear collider based superconducting RF

- proven and *industrialised* technology
- strong general in
- significant industr (and elsewhere)

strong lab expert

ILC in Japan — or LCF@CERN starting with ILC technology — minimize time til next project => crucial for next generation of our community!

2021 for Snowmass

- => could take significant load off CERNs shoulders while still busy with / paying off HL-LHC
- CERN site actually been studied for ILC TDR...

15 MW, 142 µ 15 MIN, 142 µ CLIC: e⁺e⁻ @ 0.38, 1.5, 3 TeV delay loop 73 r CR1 293 m CR2 439 r Conceptual Design **2012** Updated Baseline in 2017 & ***** main linao, 12 GHz, 100 MWm, 21 km e* main linar 2-beam acceleration 48.3 kr Main Beam combiner ring turnaround damping ring booster line 2,85 to 9 Gel DS beam delivery syste nteraction poi

Revisiting siting of ILC-like machine at CERN

revisiting ILC siting at CERN from TDR and CLIC siting

- updating / merging existing material, incl. CERN-specific CFS costing for an "ILC-like" machine
- extending the CLIC&ILC life-cycle-assessment ("ARUP study") from civil construction to full project
- currently ongoing @global LC community:
 - updating the costing for 250 GeV and 550 (!) GeV SCRF collider

LC Vision | J. List | LCWS | 11 July 2024

Revisiting siting of ILC-like machine at CERN

LC Vision | J. List | LCWS | 11 July 2024

Tunnel Geometry and Global Warming Potential

- Linear Collider Facility at CERN:
 - round tunnel like for XFEL (5.2m) or CLIC (5.6m)
 - diameter, wall thinkness to be optimised
- ARUP study for CLIC/ILC tunnels:
 - full life-cycle assessment according to ISO standards by consultancy company (ARUP)
 - green house gas emission plus
 13 more impact categories
 - showed room for 40% reduction of GWP
 - new: being extended to "content" of tunnels & halls

https://edms.cern.ch/document/2917948/1

Cost estimates...

- Cost estimates are being updated stay tuned....
- **old** (!) existing costings (European accounting):
 - CLIC500 (CDR, 2010): 7.4 BCHF
 - ILC500 (TDR, 2012): 8 BILCU (ILCU = US\$ in 2012)
 - CLIC380 (drive-beam / klystron, EPPSU 2018): 5.9 / 7.3 BCHF

25%

20%

15%

10%

Preparatory Phase

ILC

spending profile

Construction

5

6

7

8

Cost estimates...

LC Vision | J. List | LCWS | 11 July 2024

2nd Interaction Region — for 2nd e+e- detector — or yy / ey / e-e-?

- 2nd Beam Delivery System (BDS) to 2nd Interaction Region, served "quasi-concurrently", by switching on train-by-train basis have been designed for ILC & CLIC
- eliminating it from ILC baseline "saved" O(0.5) BILCU could reinstantiate for a Linear Collider Facility
- 2 IRs are important for
 - 2 detectors for redundancy, technological complementarity, systematic cross-checks, competition
 - special collision modes: e-e- / γ e / $\gamma\gamma$, each adding specialized, unique physics opportunities
 - ... but do of course not double the e+e- luminosity

Beyond e+e- Collisions - Beam Dump / Fixed Target Experiments

Ample opportunities to foresee beam extraction / dump instrumentation / far detectors at a LCF

- extraction of bunches before IP -> mono-energetic, extremely stable, few 10¹⁰ @ 1-10 Hz
 - super-LUXE (SF-QED χ = O(few hundred) & BSM search)
 - super-LDMX, ...
- disrupted beam after IP -> broad energy and highly divergent, but up to 4x10²¹ eot/a (SHIP: 10²⁰ pot in 5 years)
- super-SHIP, generic dark photon and ALP searches => together with e+e- cover all Dark Sector portals **ILCX workshop** Chap 11 of arXiv:2203.07622 Studied for ILC around 2021 and talks at this LCWS! Revisit for LCF — estimate size of user community? Bunch A COLORISE COLORISCO Bunch Compressor Compressor E-2 E+2 E+7 (photon) 60kW 60kW 300kW E+1 60kW E-1 E-3 E-6 E+3 E+6 60kW 60kW F-7 60kW 60kW 60kW E+4 60kW 400kW 400kW F-5 17MW 8MW 17MW

Beyond e+e- Collisions - Test and R&D Facilities

low-emittance, mono-energetic beams ideal for

• high-rate detector and beam instrumentation tests

ILCX workshop

 creating low-emittance beams of photons / muons / neutrons for various applications (hadron spectroscopy, material science, irradiation, tomography, radioactive isotope production, ...

accelerator development:

- high-gradient accelerating structures, new final focus schemes, deceleration (for ERLs), beam and laser driven plasma, ...
- from extracted beam to test small setups to large-scale demonstrators for upgrades of the main facility
- impact on e+e- luminosity?
 - ILC: ~1300 / ~2600 bunches per train
 - extracting 10 bunches per train is few-permille loss in luminosity

Beyond e+e- Collisions - Test and R&D Facilities

ILCX workshop

low-emittance, mono-energetic beams ideal for

high-rate detector and beam instrumentation tests

 creating low-emittance beams of photons / muons / neutrons for various applications (hadron spectroscopy, material science, irradiation, tomography, radioactive isotope production, ...

accelerator development:

- high-gradient accelerating structures, new final focus schemes, deceleration (for ERLs), beam and laser driven plasma, ...
- from extracted beam to test small setups to large-scale demonstrators for upgrades of the main facility
- impact on e+e- luminosity?
 - ILC: ~1300 / ~2600 bunches per train
 - extracting 10 bunches per train is few-permille loss in luminosity

Pioneering this *now* at DESY / Eu.XFEL with ELBEX facility (beam extraction for LUXE & other applications)

Upgrade Options - Higher Energy "conventional"

Chap 15 of arXiv:2203.07622

• ILC TDR: upgrade of SCRF machine up to ~1 TeV

• extend tunnel to ~50 km, upgrade power to 300 MW
 => huge but unsexy? Still: guaranteed fall-back...

Advanced SCRF

 higher gradient cavities exist in the lab (45 MV/m vs 31.5 MV/m ILC design), though not yet industrially available

=> upgrade to > 1 TeV — or less new tunnel

- rip out SCRF and replace by X-band copper cavities (à la CLIC or C3)
 - 70-150 MV / m => double (3x, 4x ...?) energy without tunnel extension
 - sell / donate SCRF modules to build XFELs, irradiation facilities, ... all around the world

Upgrade Options - Double ECM by "HALHFing" LCF

- Apply HALHF concept to eg 250 GeV ILC:
 - plasma-accelerate e- to 550 GeV
 - keep e+ linac ۲ (small upgrade 125 -> 137.5 GeV)
- \Rightarrow 137.5 GeV on 550GeV \Rightarrow ECM = 550 GeV
- \Rightarrow upgrade Higgs Factory to tt / tth / Zhh factory
- How?
 - Reduce e- linac energy by 4 to 34.4GeV
 - Drive 16 stage plasma accelerator
- Use space between electron ML and BDS to install plasma booster
- Feed boosted electrons into existing BDS ٠ (already laid out for $E_{\text{beam}} \approx 500 \text{ GeV}$)

		E- (drive)	E- (Collide)	E+
Beam energy	GeV	34.4	$34.4 \rightarrow 550$	137.5
Linac Gradient	MV/m	8.7		35
CoM energy	GeV		550	
Bunch charge	nC	4.3	1.6	6.4
Bunches/pulse		10496	656	656
Rep rate	Hz		5	
Beam power	MW	8.0	$0.18 \rightarrow 2.9$	2.9
Lumi (approx.)	cm-2s-1		~ 1 · 10 ³⁴	

Upgrade Options - Double ECM by "HALHFing" LCF

- Apply HALHF concept to eg 250 GeV ILC:
 - plasma-accelerate e- to 550 GeV
 - keep e+ linac (small upgrade 125 -> 137.5 GeV)
- \Rightarrow 137.5 GeV on 550GeV \Rightarrow ECM = 550 GeV
- ⇒ upgrade Higgs Factory to tt / tth / Zhh factory
- How?
 - Reduce e- linac energy by 4 to 34.4GeV
 - Drive 16 stage plasma accelerator
- Use space between electron ML and BDS to install plasma booster
- Feed boosted electrons into existing BDS (already laid out for E_{beam} ≈ 500 GeV)

Can we work out a corresponding scheme for laser-driven plasma / ALEGRO-style upgrade?

		E- (drive)	E- (Collide)	E+
Beam energy	GeV	34.4	34.4 → 550	137.5
Linac Gradient	MV/m	8.7		35
CoM energy	GeV		550	
Bunch charge	nC	4.3	1.6	6.4
Bunches/pulse		10496	656	656
Rep rate	Hz		5	
Beam power	MW	8.0	$0.18 \rightarrow 2.9$	2.9
Lumi (approx.)	cm-2s-1		~ 1 · 10 ³⁴	

Upgrade Options - Higher Luminosity à la "ReLiC"

• Energy and particle recovery by de-celaration and re-cooling

arXiv:2203.06476 [hep-ex]

- Conceptual study indicates up to O(100) higher luminosity than ILC / CLIC conceivable
- Effectively no beamstrahlung => even Higgs resonance operation not fundamentally excluded (conceptual idea exists but needs verification by beam optics study)

Upgrade Options - Higher Luminosity à la "ReLiC"

• Energy and particle recovery by de-celaration and re-cooling

arXiv:2203.06476 [hep-ex]

- Conceptual study indicates up to O(100) higher luminosity than ILC / CLIC conceivable
- Effectively no beamstrahlung => even Higgs resonance operation not fundamentally excluded (conceptual idea exists but needs verification by beam optics study)

Integrate R&D and demonstrator into initial LCF, upgrade option if successful?

Eventually, we want to explore the O(10 TeV)-parton-ECM scale:

- a Linear Collider Facility does not restrict the choice of how to explore the energy frontier
 => can choose independently based on scientific and technological developments
- nor is it coupled to the site:
- => if technology ready fast, could start building energy frontier machine without stopping e+e- program

Eventually, we want to explore the O(10 TeV)-parton-ECM scale:

- a Linear Collider Facility does not restrict the choice of how to explore the energy frontier
 => can choose independently based on scientific and technological developments
- nor is it coupled to the site:
- => if technology ready fast, could start building energy frontier machine without stopping e+e- program

		Energy/Lum u	ograded et
	"Higgs-	factory" <u>e+e-</u>	
LHC followed			

Eventually, we want to explore the O(10 TeV)-parton-ECM scale:

and the statistics will be a statistic of the statistics of the st

- a Linear Collider Facility does not restrict the choice of how to explore the energy frontier
 => can choose independently based on scientific and technological developments
- nor is it coupled to the site:
- => if technology ready fast, could start building energy frontier machine without stopping e+e- program

or directly 5508	00 GeV if CEPC?	Energy/Lum upgraded <u>e+e</u> -
LHC followed	"Higgs-fa	ctory" e+e-
Today	2040	MuonCollider? ppCollider? PWA Collider?

Eventually, we want to explore the O(10 TeV)-parton-ECM scale:

and the state of the second second

- a Linear Collider Facility does not restrict the choice of how to explore the energy frontier
 => can choose independently based on scientific and technological developments
- nor is it coupled to the site:
- => if technology ready fast, could start building energy frontier machine without stopping e+e- program

or directly 5508	00 GeV if CEPC?	Energy/Lum upgraded e+e
LHC followed	"Higgs-fact	ory" e+e-
Today	2040	ppCollider?

Important: need significant R&D program and demonstrators to bring advanced accelerators to construction readiness - must be part of the over all picture (funding, people, facilities...)

Conclusions

A Linear Collider Facility in Japan, at CERN or whereever

offers

- the full Higgs/top/EW e+e- physics program from 91 to (at least) 1000 GeV with polarised beams
- and a rich program of other collision modes and beyond-collider / R&D opportunities

• can be built

- at CERN:
 - ~within the CERN budget (ref CLIC PIP), leaving resources for scientific diversity and investment in R&D / demonstrators
 - **early:** industrialised SCRF production & expertise in other labs minimizes interference with HL-LHC
- in Japan: even earlier if we could overcome political obstacles for funding...
- can be **upgraded** with same or **advanced accelerator technology** (CLIC, C3, Plasma, ERL, ...)
- leaves time to decide on target energy and best technology for exploring the energy frontier based on
 - scientific progress from HL-LHC and Higgs Factory
 - technology development

Outlook

- discussions towards a joint global LC vision just started
- will continue and intensify
- prepare strong contributions to the EPPSU, complementing individual project / detector concept submissions
 - "Joint LC Vision Document (arXiv)" (main ed. R.Pöschl) covering
 - physics at a LC from 90 GeV to multi-TeV (use references to existing documents, but highlight specifically
 - need for \geq 500 GeV and polarised beams
 - new results since Snowmass
 - a joint strategic vision for a Linear Collider Facility incl. upgrades, beyondcollider etc — at any location in the world
 - "Joint LC Vision EPPSU submission" (main ed. M.Peskin)
 - -> executive summary
 - "LCF@CERN submission"
- mailing lists, inner organisation of LC vision to be improved

BACKUP

Lower Energies at Linear Colliders

- Z pole: "only" few billion Z's however: polarized...
 - not compatitive with TeraZ for Z pole flavour physics & very low mass searches ("rate only")
 - EWPO: improve by at least an order of magnitude (polarisation makes a huge difference!)
 - schedule as needed after Higgs running incl. "free" Z physics from rad. return
- Higgs resonance running: not possible with classic Linear Collider might change with ERL upgrade???
- WW threshold scan: possible if needed after mW from continuum

Lower Energies at Linear Colliders

- Z pole: "only" few billion Z's however: polarized...
 - not compatitive with TeraZ for Z pole flavour physics & very low mass searches ("rate only")
 - EWPO: improve by at least an order of magnitude (polarisation makes a huge difference!)
 - schedule as needed after Higgs running incl. "free" Z physics from rad. return
- Higgs resonance running: not possible with classic Linear Collider might change with ERL upgrade???

The raison d'être of a Linear Collider Facility are energies ≥ 500 GeV

- Iow-E program can be covered with running 500+ GeV machine at lower gradients
- as needed after exploring higher energies
- start at 250 GeV serves to lower theshold of initial investment as much as possible!

Direct Search Example - Complementarity of Different Approaches Heavy Neutral Leptons

From ILC@CERN to Linear Collider Facility

- excellent starting point for a Linear Collider Facility
- ... but needs to be (re-)augmented to a true "facility"
- eg revisit many of the previous cost saving measure....

ILC Parameters at CERN

- Energy/length: 31km corresponding to 500 GeV
- Crossing angle: 14 mrad
- Entirely laser straight
- Tunnel diameter → The CLIC klystron tunnel is excessive. The European XFEL is 5.2m. There is one klystron every ~40 etc. → conclusion: ~6m estimate
- Push/pull caverns and access points as in the TDR and in the current ILC layout.
- DR layout at CERN as in TDR studies (see page 192 onwards at: <u>https://linearcollider.org/files/images/pdf/Acceleratorpa rt2.pdf</u>)

Figure 11.1. ILC tunnel schematic for KCS showing accelerator systems, IR hall and support tunnels.

John Osborne, Tamara Bud CERN

From ILC@CERN to Linear Collider Facility

- excellent starting point for a Linear Collider Facility
- ... but needs to be (re-)augmented to a true "facility"
- eg revisit many of the previous cost saving measure....

ILC Parameters at CERN

- Energy/length: 31km corresponding to 500 GeV
- Crossing angle: 14 mrad
- Entirely laser straight
- Tunnel diameter →The CLIC klystron tunnel is excessive. The European XFEL is 5.2m. There is one klystron every ~40 etc. → conclusion: ~6m estimate
- Push/pull caverns and access points as in the TDR and in the current ILC layout.
- DR layout at CERN as in TDR studies (see page 192 onwards at: <u>https://linearcollider.org/files/images/pdf/Acceleratorpa rt2.pdf</u>)

Figure 11.1. ILC tunnel schematic for KCS showing accelerator systems, IR hall and support tunnels.

