
Higgs to ss study

First year graduate student at Iwate University Ryuki Sugawara

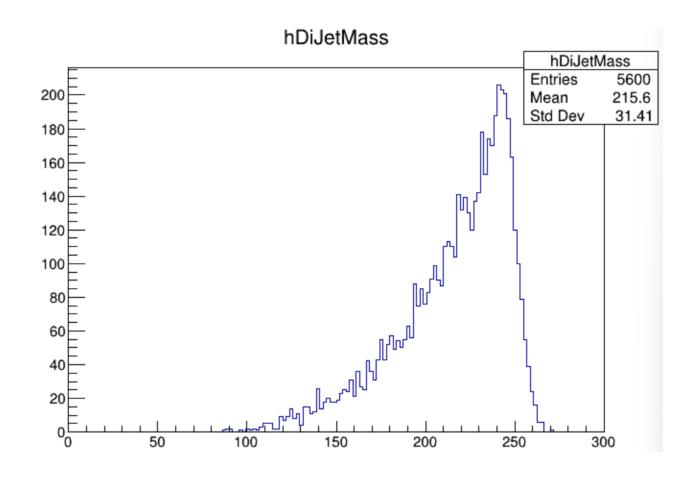
Hadronic channel (qqH)

信号事象	反応断面積 (fb^{-1})	事象数
$e^+e^-{\rightarrow}ZH{\rightarrow}q\bar{q}H$	210.028	52,507
背景事象	反応断面積 (fb^{-1})	事象数
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q}$	600	149,979
$e^+e^-{ ightarrow}q\bar{q}q\bar{q}$	16200	4,048,386
$e^+e^- \rightarrow \nu \ell q \bar{q}$	16500	4,114,190
$e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$	1590	398,324
$e^+e^- \rightarrow \nu \bar{\nu} \ell^+ \ell^-$	4450	1,113,076
$e^+e^- \rightarrow \ell^+\ell^-\ell^+\ell^-$	3050	762,973
$e^+e^-{\rightarrow}q\bar{q}$	141000	35,353,277
$e^+e^-{ ightarrow} gg$	34000	8,505,840

This is the signal event

Although the number of signal events is larger than in other processes, the number of background events is also larger, and efficient removal of background events is required.

There are four jets, two from the Higgs and two from the boson, and it is also important to correctly select the Higgs-decayed jet in the reconstruction.

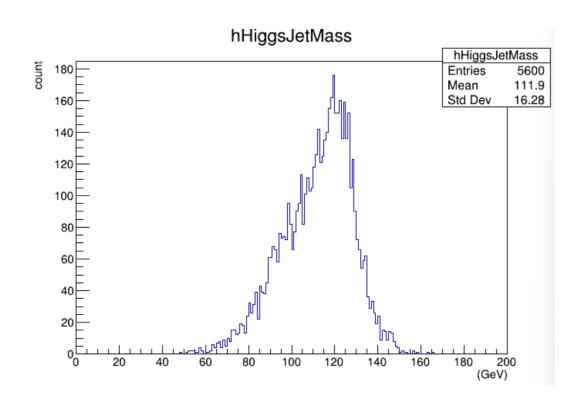

reference document:東北大学大学院理学研究科 物理学専攻 吉田幸平「国際リニアコライダーにおける ヒッグス粒子の崩壊分岐比測定の研究」

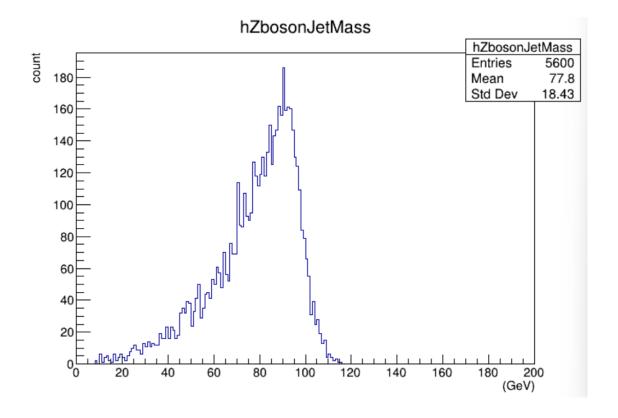
Hadronic channel Analysis Process (qqH)

- (1) Thrust processor is used for signal events.
- (2) Reconstruct with 4 jets.
- (3) Put data in a root file.
- (4) Perform analysis on that root file.
- (5) Analyze in the same way in the background.

Hadronic channel (qqH)

Used Data:rv02-02.sv02-02.mILD_I5_o1_v02.E250-SetA.I402011.Pqqh.eL.pR.n000.d_dstm_15095_0.slcio


It is reconstructed with 4 jets, so the peak is at 250 GeV.


4-jet sorting

The jets were chosen so that χ^2 in this equation is the smallest.

$$\chi^2 = \left(\frac{M_{j_1 j_2} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{j_3 j_4} - M_H}{\sigma_H}\right)^2, \qquad \stackrel{*}{*}M_Z = 91.2 \ GeV \ , M_H = 120 \ GeV \ \sigma_H = 4.4 \ GeV \ \sigma_Z = 4.7 \ GeV$$

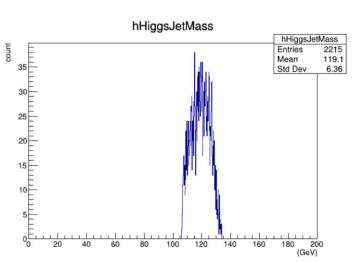
$$M_Z = 91.2 \ GeV$$
, $M_H = 120 \ GeV$
 $\sigma_H = 4.4 \ GeV$ $\sigma_Z = 4.7 \ GeV$

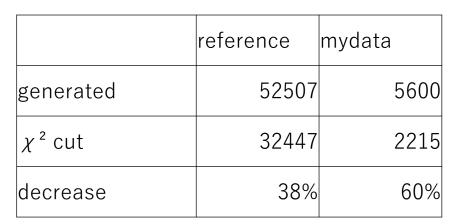
Type of Cut

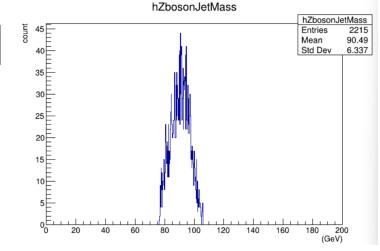
CM energy (GeV)	250			
Cut names	condition	Sig.	Bkg.	
Generated		52507	45904900	
χ^2	$\chi^{2} < 10$	32447	2608980	
# of charged tracks	$N_{chd} > 4$	25281	1120950	
Y_{34} value	$-\log(Y_{34}) > 2.7$	25065	1002125	
thrust	thrust < 0.9	24688	935950	
thrust angle	$ \cos \theta_{\rm thrust} < 0.9$	21892	696201	
Higgs jets angle	$105^o < \theta_H < 160^o$	20062	622143	
Z di-jet mass (GeV)	$80 < M_Z < 100$	16359	411863	
H di-jet mass (GeV)	$105 < M_H < 130$	16359	411863	
Likelihood ratio	LR > 0.375	13726	166807	
Significance (Efficiency)	$S/\sqrt{S+B}$	32.3	(26.1%)	

These are the cuts in this issue of the Hadron Channel.

made the cut this time χ squared

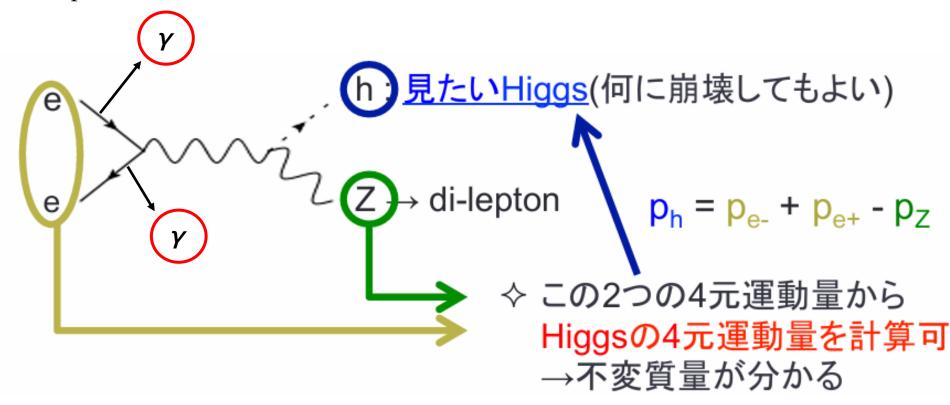

$\chi^2 < 10$


Cuts were made with a χ -square of this equation less than 10.

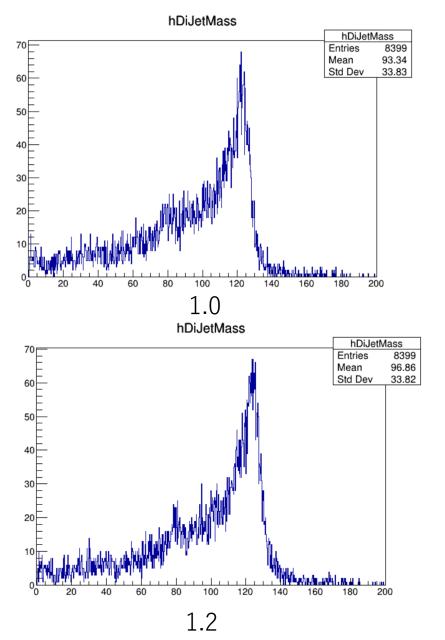

Mr.Ono data shows a 38% reduction with this cut, whereas my data shows a reduction of about 60%.

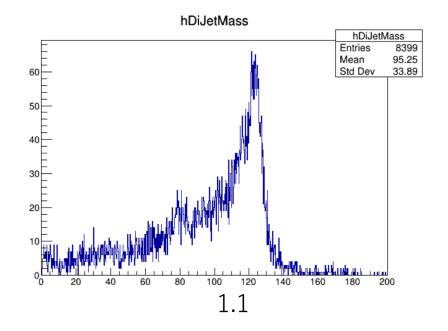
$$\chi^2 = \left(\frac{M_{j_1 j_2} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{j_3 j_4} - M_H}{\sigma_H}\right)^2,$$

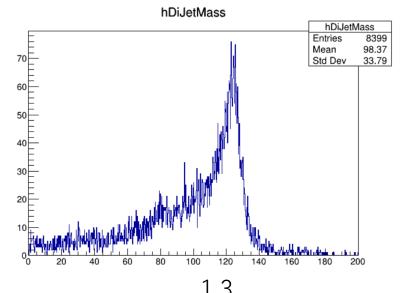
	hkai		
		hkai	
<u> </u>		Entries	5600
200		Mean	22.27
400		Std Dev	24.52
180			
160			
140			
120			
100			
Ε''			
80 - 1			
60 - 3	Π.		
E	ሥ ^ኒ -ባ _{በ _}		
40			
20			
F	╹╶┖┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸	- Մուսվեվիտ-Իսխ	
0 1	0 20 30 40 50 60 70 80		00

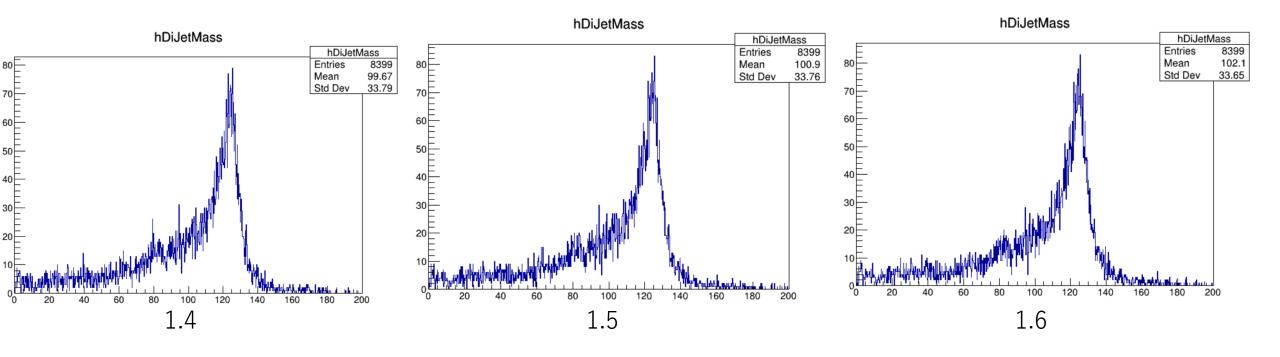


Consider that electrons and positrons drop photons before collisions

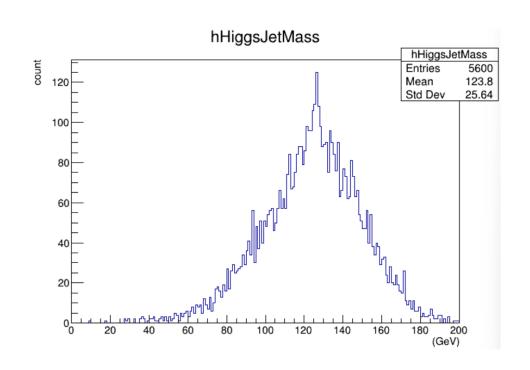

To account for energy loss before impact

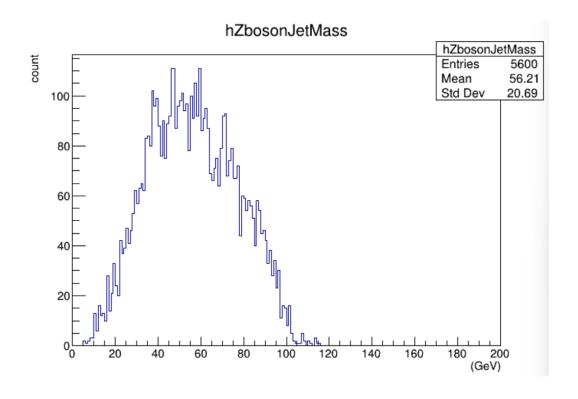

The following sentence was added to the Jet Clustering steering file. cparameter name="JetClustering.AlphaParameter" type="double" value="1.3" />


Change this parameter from 1.0 to 1.6 and see the distribution of each.


Alpha parameter change result 1 to 1.3

Alpha parameter change result 1.4 to 1.6


As the parameter increases, the number of locations above 140 GeV gradually decreases.


<u>Next</u>

Make all cuts in the hadron process

Back up

Another pattern H=Jet(1,2) Z=Jet(3,4)

