

1

6 This note presents results of the first full simulation study addressing prospects for observation ⁷ of long-lived particles (LLPs) with the International Large Detector (ILD). Neutral LLP produc-⁸ tion, resulting in a displaced vertex signature inside the ILD's time projection chamber (TPC), is ⁹ considered. We focus on scenarios interesting from the experimental perspective and perform a ¹⁰ search based on displaced vertex finding inside the TPC volume. Two experimentally very chal-11 lenging types of scenarios are explored: first, involving very soft final states due to a small mass 12 splitting between heavy LLP and a dark matter particle to which the LLP decays, and the second ¹³ one, with a light LLP production resulting in almost colinear vertex tracks because of a large boost ¹⁴ of the LLP. The expected limits on the signal production cross section are presented for a wide 15 range of the LLP proper lifetimes corresponding to $c\tau$ from 0.1 mm to 10 km. The analysis was ¹⁶ extended to consider also Higgs boson decays to LLPs, using additional assumptions on the final 17 state to improve the expected sensitivity.

¹⁹ **1 Introduction**

²⁰ The ILD [\[1\]](#page-2-0) is one of the experiments proposed for operation at a future Higgs factory. Its tracking sys-₂₁ tems include a pixel vertex detector and a silicon inner tracker, surrounded by a time projection chamber ²² (TPC), which is promising in the case of searches for delayed decays. This note, to a large extent based 23 on Ref. [\[2\]](#page-2-1), presents prospects for the detection of neutral LLPs with the ILD, using the International Linear $\frac{1}{24}$ Collider (ILC) [\[3\]](#page-2-2) operating at $\sqrt{s} = 250 \,\text{GeV}$ (ILC250) as a reference collider.

²⁵ **2 Analysis strategy and benchmark scenarios**

²⁶ Benchmark scenarios considered were not selected based on existing constraints on BSM models, but for ₂₇ signatures challenging from experimental perspective. Two opposite classes of benchmarks were chosen, ²⁸ with the first one involving a very soft displaced track pair in the final state. We used pair-production of heavy ²⁹ neutral scalars, A and H, where the former is the LLP and the latter is stable (and escapes undetected). $_3$ The LLP decay channel is A \rightarrow Z^{*}H, and its mass and proper decay length were fixed to $m_A = 75\,\text{GeV}$ and 31 *c* τ = 1 m. Four mass splitting values between A and H were considered: $m_A - m_H = 1, 2, 3, 5$ GeV. The second 32 class features production of a very light and highly boosted LLP with strongly collimated final-state tracks. It 33 was generated using the associated production of a pseudoscalar LLP, a, with a hard photon. Four masses of

 m_a LLP were considered, $m_a = 0.3, 1, 3, 10 \text{GeV}$, with $c\tau = m_a \cdot 10 \text{mm/GeV}$. Only decays of Z^{*} and a to muons

³⁵ were simulated. The analysis relied on vertex-finding algorithm designed for this study and was performed

³⁶ in a model-independent way, considering only the displaced vertex signature in the TPC, ignoring any other

37 activity in the detector. The study was carried out using full detector response simulation.

³⁸ **3 Background reduction**

 $_3$ Two types of background have been taken into account – soft, beam-induced (low- p_T) processes and hard $_4$ ₀ (high- p_T) processes. The beam-induced processes occurring in each bunch-crossing constitute a significant ⁴¹ standalone background if one wants to consider soft signals. To reject fake vertices, a set of quality cuts was 42 applied on the variables describing kinematic properties of tracks. The main background sources that remain $_{43}$ include $\rm V^0$ particles (long-lived neutral hadron decays and photon conversions) and secondary interactions of particles with the detector material. In addition to rejection based on a dedicated ILD software for V^0 44 45 identification, cuts corresponding to masses of different V^0 s are applied. Further cuts on the total $p_T^{\rm vtx}$ of ⁴⁶ tracks forming the vertex, and on variables describing track-pair geometry, provide the total reduction factor 47 of $1.26 \cdot 10^{-10}$ for beam-induced backgrounds. Two- and four-fermion production with hadronic jets in the final 48 state was considered as the high- p_T background. To improve the high- p_T background rejection, in addition ⁴⁹ to the *standard* selection described above, we also consider the *tight* selection, where track pairs with an ⁵⁰ invariant mass below 700 MeV are rejected. An isolation criterion is also included in tight selection.

⁵¹ **4 Results of the model-independent analysis**

52 Vertex finding rates for the signal and the background were used to obtain the expected 95% C.L. upper 53 limits on the signal production cross section, $\sigma_{95\%{\rm C.L.}}$, assuming integrated luminosity of 2 ab^{−1}. An event 54 re-weighting was also performed to obtain the limits for a range of LLP lifetimes without generating and pro-⁵⁵ cessing a large number of event samples. The limits are presented in Figure [1](#page-2-3) as a function of LLP proper ⁵⁶ decay length *c*τ. Tight selection allows to strongly enhance the reach, but results in a loss of sensitivity to the $m_a = 300$ MeV scenario.

⁵⁸ **5 Higgs decays to long-lived particles**

⁵⁹ We also consider a set of benchmarks with the SM-like Higgs boson decays to long-lived scalars. The Higgs

⁶⁰ production channel used was $e^+e^-\to$ hZ at ILC250, with Z \to v \overline{v} and h \to SS, where S is long-lived. We

Figure 1: Expected 95% C.L. upper limits on the signal production cross-section for the considered benchmarks and different LLP mean decay lengths, for the scalar pair-production (left) and the light pseudoscalar production (right) at [√] *s* = 250 GeV. Solid lines corresponds to the standard selection and dashed lines to the tight set of cuts. The uncertainties are statistical.

Figure 2: Expected 95% C.L. upper limits on the signal production cross-section (left) and the branching ratio (right) for the considered benchmarks and different LLP mean decay lengths, for the Higgs decays to long-lived scalars at [√] *s* = 250 GeV. The uncertainties are statistical.

61 selected four benchmarks, two low-mass ($m_S = 0.4$ GeV and 2 GeV, with $c\tau = 10$ mm) and two high-mass ($m_S = 50$ GeV and 60 GeV, with $c\tau = 1$ m) scenarios. Because Z decays to neutrinos, the expected signature 63 is at least one displaced vertex. Therefore, in addition to the selection described so far, events containing $_{64}$ prompt tracks with $p_T > 2 \text{GeV}$ are rejected. Now also the $p_T^{vtx} > 10 \text{GeV}$ requirement was applied to allow us to fully neglect low- p_T beam-induced backgrounds. The expected number of background events is approx. 66 0.64 after the standard selection and the additional cuts. The corresponding 95% C.L. limits on the signal ⁶⁷ production cross section (left) and the branching ratio BR(h \rightarrow SS) = $\sigma_{95\%CL}/\sigma_{hVV}$ (right) are presented in 68 Figure [2,](#page-2-4) conservatively assuming that the observed number of events is one. ILD could improve the current 69 limits [\[4\]](#page-2-5) in the most extreme scenarios by an order of magnitude, or investigate longer lifetimes. Smaller decay lengths could be tested by a dedicated search using a vertex detector.

6 References

- [1] H. Abramowicz et al., ILD Concept Group, *International Large Detector: Interim Design Report* (2020), arXiv: [2003.01116](https://arxiv.org/abs/2003.01116).
- [2] J. Klamka, A. F. Zarnecki,
- *Searching for displaced vertices with a gaseous tracker for a future e*⁺ *e* − *Higgs factory* (2024), arXiv: [2409.13492 \[hep-ex\]](https://arxiv.org/abs/2409.13492).
- [3] P. Bambade et al., *The International Linear Collider: A Global Project* (2019), arXiv: [1903.01629](https://arxiv.org/abs/1903.01629).
- [4] A. Hayrapetyan et al., CMS, *Dark sector searches with the CMS experiment* (2024),
- arXiv: [2405.13778 \[hep-ex\]](https://arxiv.org/abs/2405.13778).