
Higgs to ss study

First year graduate student at Iwate University Ryuki Sugawara

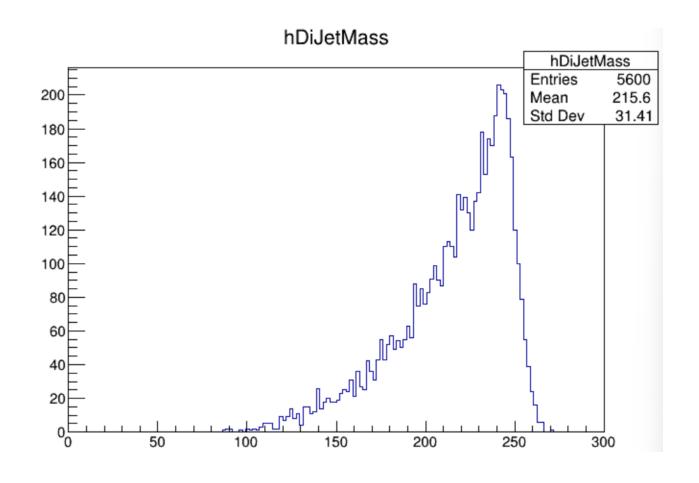
Hadronic channel (qqH)

信号事象	反応断面積 (fb^{-1})	事象数
$e^+e^-{\rightarrow}ZH{\rightarrow}q\bar{q}H$	210.028	52,507
背景事象	反応断面積 (fb^{-1})	事象数
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q}$	600	149,979
$e^+e^-{ ightarrow}q\bar{q}q\bar{q}$	16200	4,048,386
$e^+e^- \rightarrow \nu \ell q \bar{q}$	16500	4,114,190
$e^+e^- \rightarrow \ell^+\ell^- q\bar{q}$	1590	398,324
$e^+e^- \rightarrow \nu \bar{\nu} \ell^+ \ell^-$	4450	1,113,076
$e^+e^- \rightarrow \ell^+\ell^-\ell^+\ell^-$	3050	762,973
$e^+e^-{\rightarrow}q\bar{q}$	141000	35,353,277
$e^+e^-{ ightarrow} gg$	34000	8,505,840

This is the signal event

Although the number of signal events is larger than in other processes, the number of background events is also larger, and efficient removal of background events is required.

There are four jets, two from the Higgs and two from the boson, and it is also important to correctly select the Higgs-decayed jet in the reconstruction.

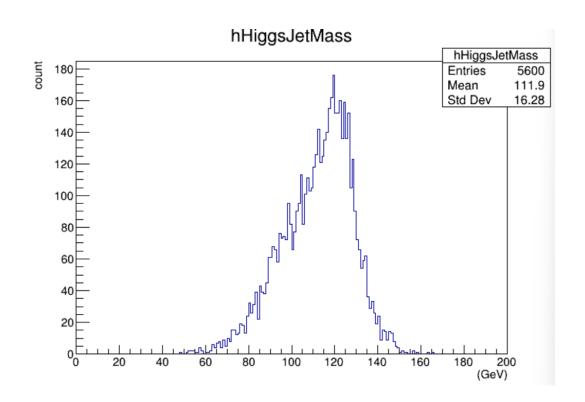

reference document:東北大学大学院理学研究科 物理学専攻 吉田幸平「国際リニアコライダーにおける ヒッグス粒子の崩壊分岐比測定の研究」

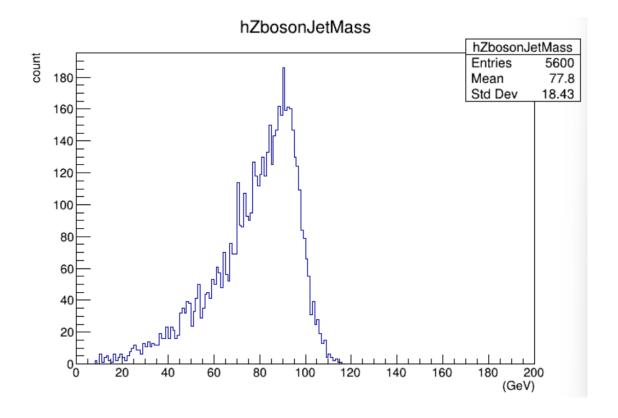
Hadronic channel Analysis Process (qqH)

- (1) Thrust processor is used for signal events.
- (2) Reconstruct with 4 jets.
- (3) Put data in a root file.
- (4) Perform analysis on that root file.
- (5) Analyze in the same way in the background.

Hadronic channel (qqH)

Used Data:rv02-02.sv02-02.mILD_I5_o1_v02.E250-SetA.I402011.Pqqh.eL.pR.n000.d_dstm_15095_0.slcio


It is reconstructed with 4 jets, so the peak is at 250 GeV.


4-jet sorting

The jets were chosen so that χ^2 in this equation is the smallest.

$$\chi^2 = \left(\frac{M_{j_1 j_2} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{j_3 j_4} - M_H}{\sigma_H}\right)^2, \qquad \stackrel{*}{*}M_Z = 91.2 \ GeV \ , M_H = 120 \ GeV \ \sigma_H = 4.4 \ GeV \ \sigma_Z = 4.7 \ GeV$$

$$M_Z = 91.2 \ GeV$$
, $M_H = 120 \ GeV$
 $\sigma_H = 4.4 \ GeV$ $\sigma_Z = 4.7 \ GeV$

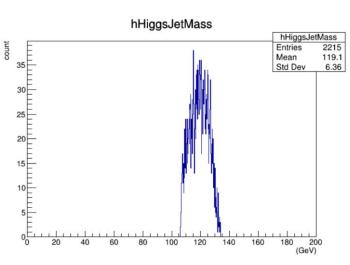
Type of Cut

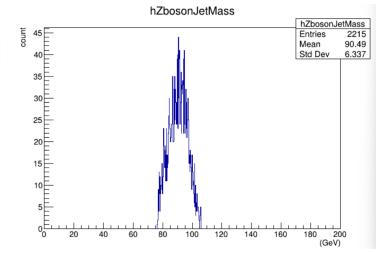
CM energy (GeV)	250		
Cut names	condition	Sig.	Bkg.
Generated		52507	45904900
χ^2	$\chi^{2} < 10$	32447	2608980
# of charged tracks	$N_{chd} > 4$	25281	1120950
Y_{34} value	$-\log(Y_{34}) > 2.7$	25065	1002125
thrust	thrust < 0.9	24688	935950
thrust angle	$ \cos \theta_{\rm thrust} < 0.9$	21892	696201
Higgs jets angle	$105^o < \theta_H < 160^o$	20062	622143
Z di-jet mass (GeV)	$80 < M_Z < 100$	16359	411863
H di-jet mass (GeV)	$105 < M_H < 130$	16359	411863
Likelihood ratio	LR > 0.375	13726	166807
Significance (Efficiency)	$S/\sqrt{S+B}$	32.3	(26.1%)

These are the cuts in this issue of the Hadron Channel.

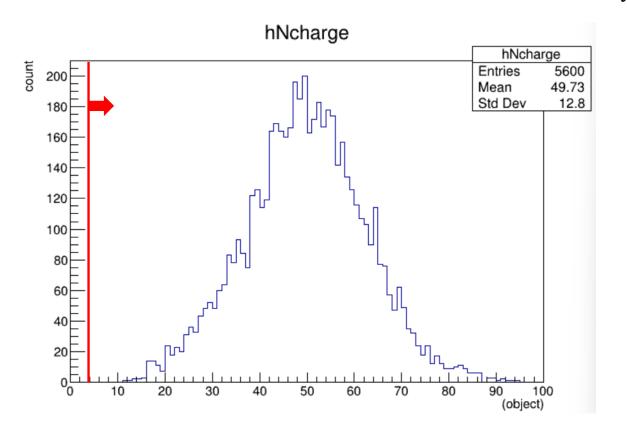
made the cut this time χ squared

$\chi^2 < 10$


Cuts were made with a χ -square of this equation less than 10.


Mr.Ono data shows a 38% reduction with this cut, whereas my data shows a reduction of about 60%.

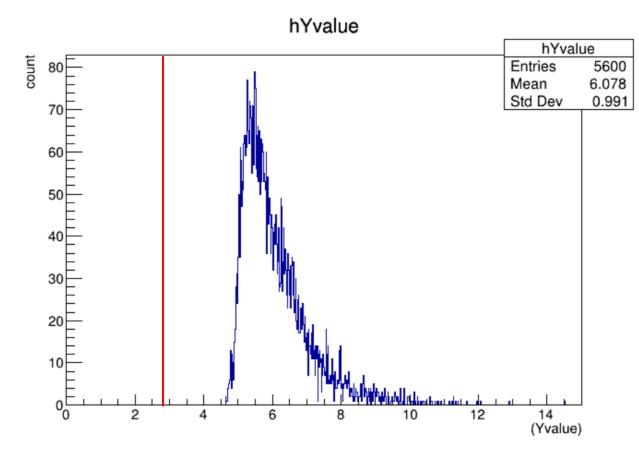
$$\chi^2 = \left(\frac{M_{j_1 j_2} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{j_3 j_4} - M_H}{\sigma_H}\right)^2,$$


	hkai			
		hka		
200		Entries Mean Std Dev	5600 22.27 24.52	
180				
140				1
120				
100				
80 - 1				
60				
40				
20	" ԿՐՈ ԿՈՍ ԿՈՐ ԿՐԻՆԻՆԻ ԱՐԱՆԻՆԻ ՄԻՆԵՐ ԱՐՆԻՆԻ ՄԻՆԵՐ ԱՐՆԻՆԻ ՄԻՆԵՐ ՄԻՆԵՐ ԱՐՆԻՆԻ ՄԻՆԵՐ ՄԻ	-Մ _{ՆՆՎՆ} ՄՆՆ-ՆՆՆ 90 1	00	

	reference	mydata
generated	52507	5600
χ² cut	32447	2215
decrease	38%	60%

Ncharge > 4

The distribution of the number of charged tracks.

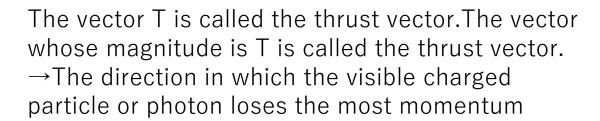

Used: MCParticleSkimmed MCPart charge By requiring the number of charged tracks, the *llll*, *vvqq*, *gg*, events are eliminated.

> It can be seen that there are no events with less than four charged tracks in the signal event.

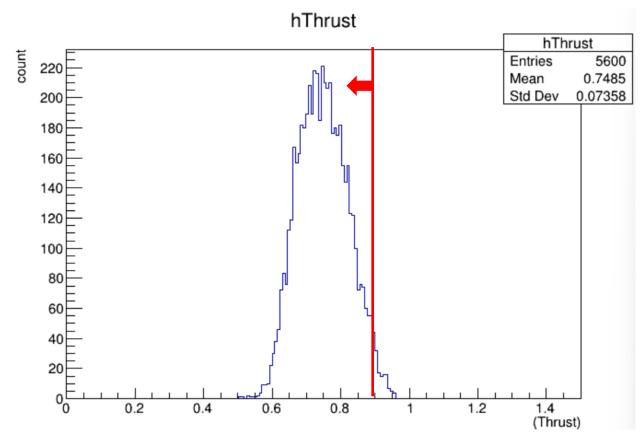
The Y value is used to determine how many jets are present.

$$Y_{kl} = \frac{2\min(E_k, E_l) (1 - \cos \theta)}{E_{vis}^2}$$

Reconstructed with 4 jets when -logY is less than 2.7 Background is also removed.



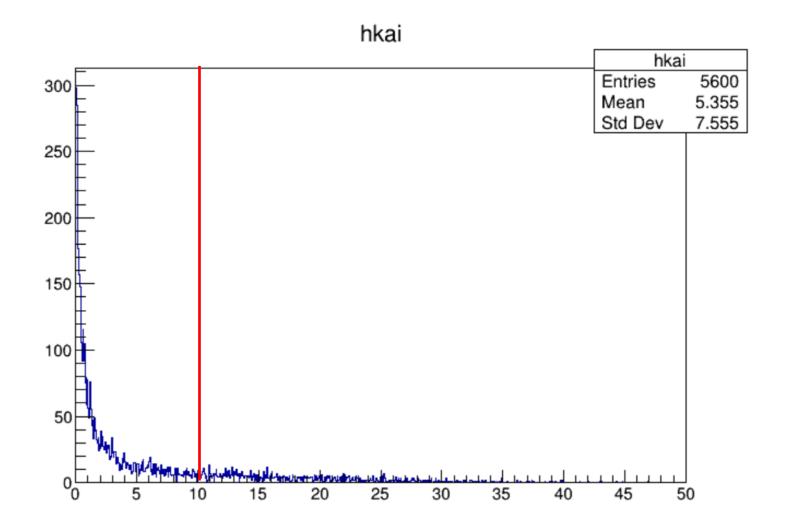
It can be seen that there are no events with less than four charged tracks in the signal event.


<u>thrust</u>

Thrust Vector

$$T = \frac{\sum |\overrightarrow{p_i} \cdot \overrightarrow{e}|}{\sum |\overrightarrow{p_i}|}$$

	reference	mydata
generated	25065	5600
Thrust Cut	24688	5488
decrease	1.5%	2%


thrust angle

<u>Next</u>

Make thrust angle cuts.

Make the cut by adding background.

Back up

