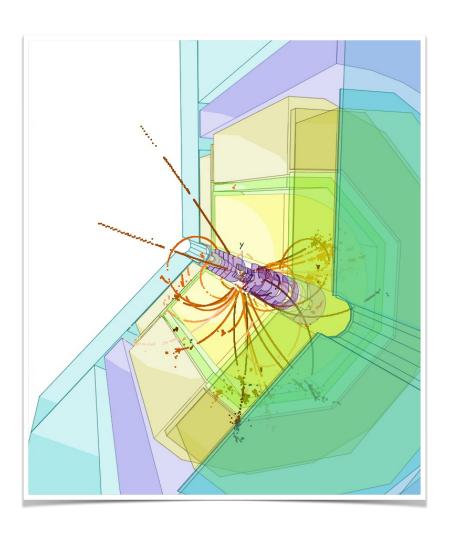
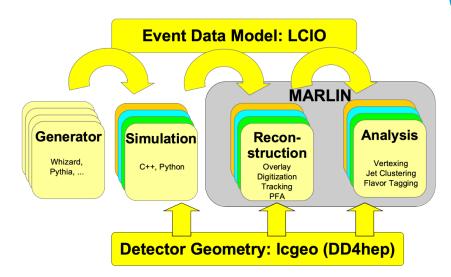
Software for future collider studies: ILD and beyond

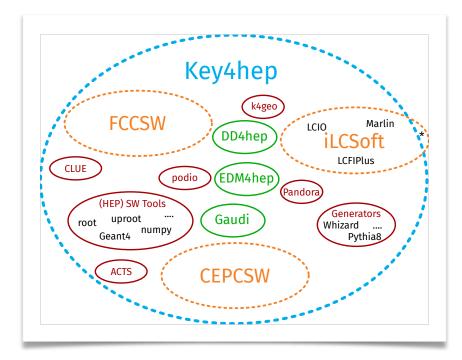
ILD Meeting connected to ECFA 2024


Frank Gaede, DESY LPHNE, Paris Oct 8, 2024

Outline

- Introduction and Reminder: Key4hep
- DD4hep detector models and reconstruction
- Standard ILD reconstruction algorithms and "Transition" to to Key4hep
- Al/ML in Key4hep:
 - fast simulation and
 - recent HLR algorithms w/ ML
- Summary and Outlook

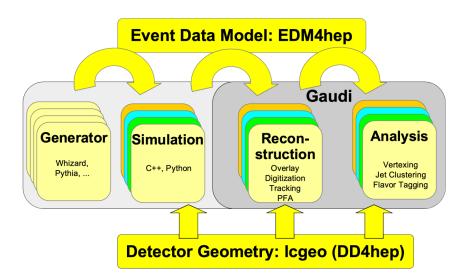


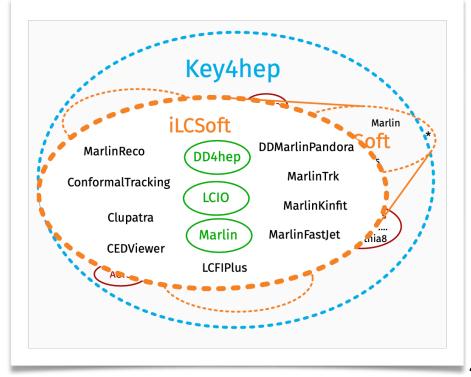


The common software vision

iLCSoft as integral part of Key4hep

- complete set of tools for
 - generation, simulation, reconstruction, analysis
 - build, package, test, deploy
- core ingredients of current Key4hep
 - **PODIO** for **EDM4hep** (based on LCIO and FCC-edm)
 - Gaudi framework, devel/used for (HL-)LHC
 - **DD4hep** for geometry
 - originally developed for LC now adopted by community
 - **spack** package manager

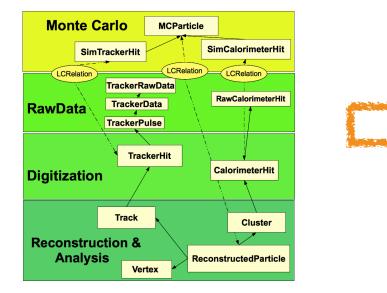


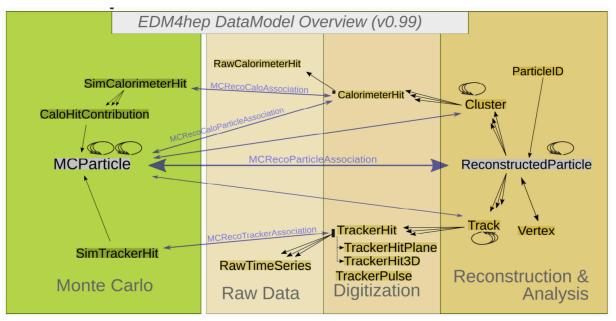


The common software vision

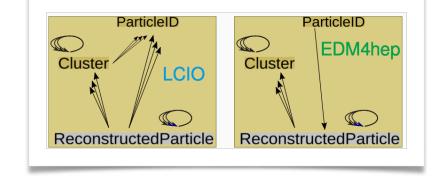
iLCSoft as integral part of Key4hep

- complete set of tools for
 - generation, simulation, reconstruction, analysis
 - build, package, test, deploy
- core ingredients of current Key4hep
 - **PODIO** for **EDM4hep** (based on LCIO and FCC-edm)
 - Gaudi framework, devel/used for (HL-)LHC
 - **DD4hep** for geometry
 - originally developed for LC now adopted by community
 - **spack** package manager

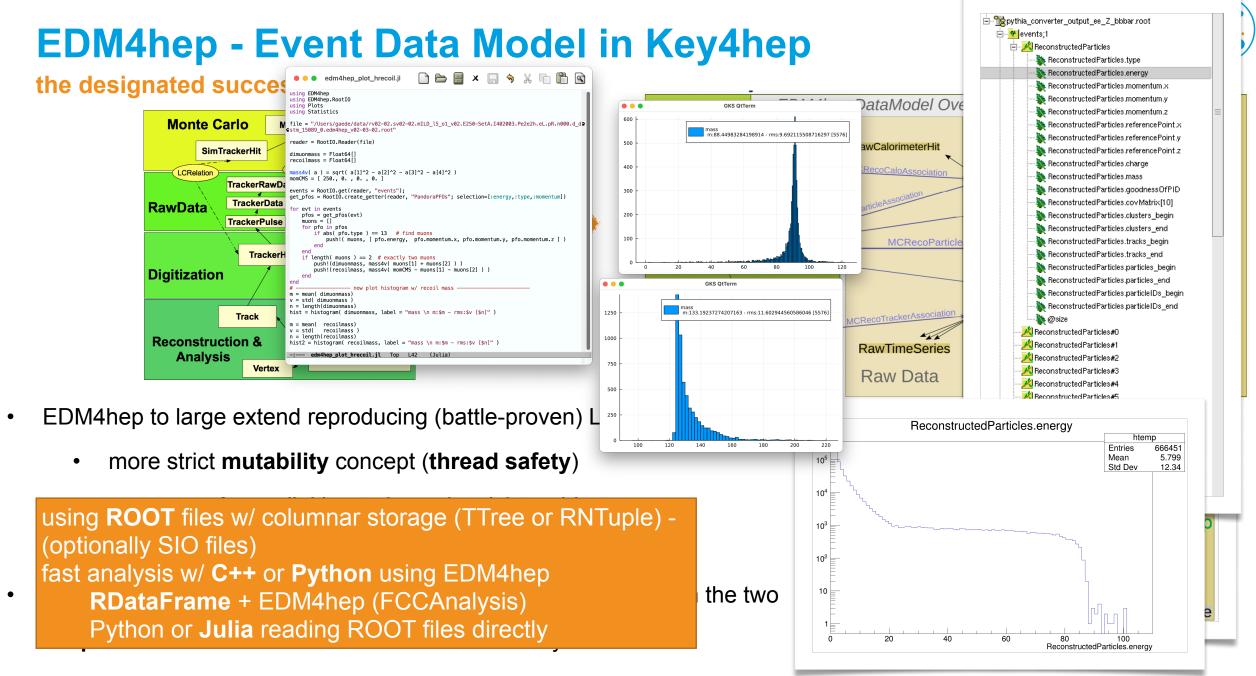




EDM4hep - Event Data Model in Key4hep



the designated successor of LCIO



- EDM4hep to large extend reproducing (battle-proven) LCIO EDM yet with
 - more strict mutability concept (thread safety)
 - more consistent linking to lower level data objects
 - more performant reading (ROOT files)
 - k4EDM4hep2LcioConv provides consistent conversion between the two
 - production version v01-00 to be released very soon

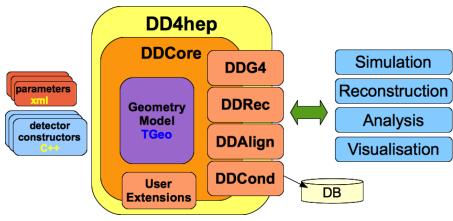
٠

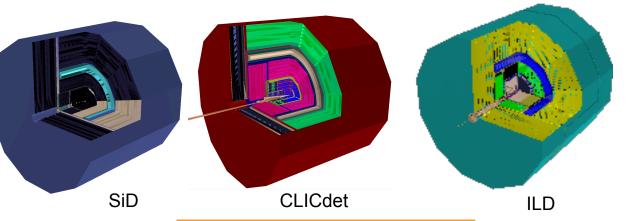
Gaudi - application framework in Key4hep

designated successor of Marlin

- C++ application framework for HEP
- developed at CERN
- used in production for
 - LHCb and ATLAS (*battle-proven*)
 - FCC-SW and smaller experiments
 - and now in Key4HEP
- highly configurable
 - EDM, workflows (algorithms)
- allows parallelisation through multi-threading
- integration of heterogeneous resources
 - CPUs, GPUs, FPGAs,...

Image: Addition of the second state		A Gaudi	
	Marlin	Gaudi	
language	C++	C++	
working unit	Processor	Algorithm	
config language	XML	Python	
transient data format	LCIO	anything	
set up function	init	initialize	
work function	processEvent	execute	
wrap up function	end	finalize	

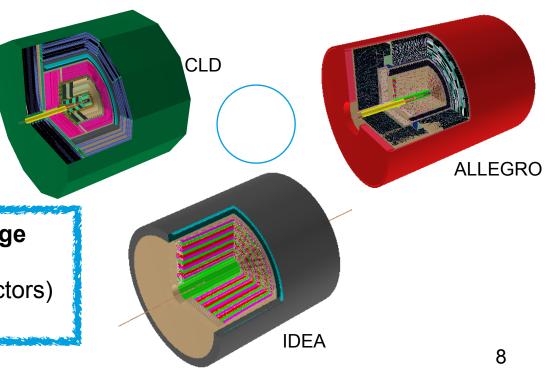

GAUDI similar to MARLIN framework yet more powerful and larger user basis



DD4hep geometry toolkit

defining the detector geometry and different views on it

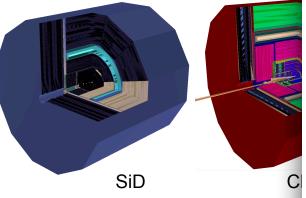
- supporting the full life cycle of the experiment
- single source of information for full simulation, reconstruction, conditions, alignment, visualisation and analysis
 - used by CEPC, CLIC, CMS, EIC, FCC, ILC, LHCb, ...



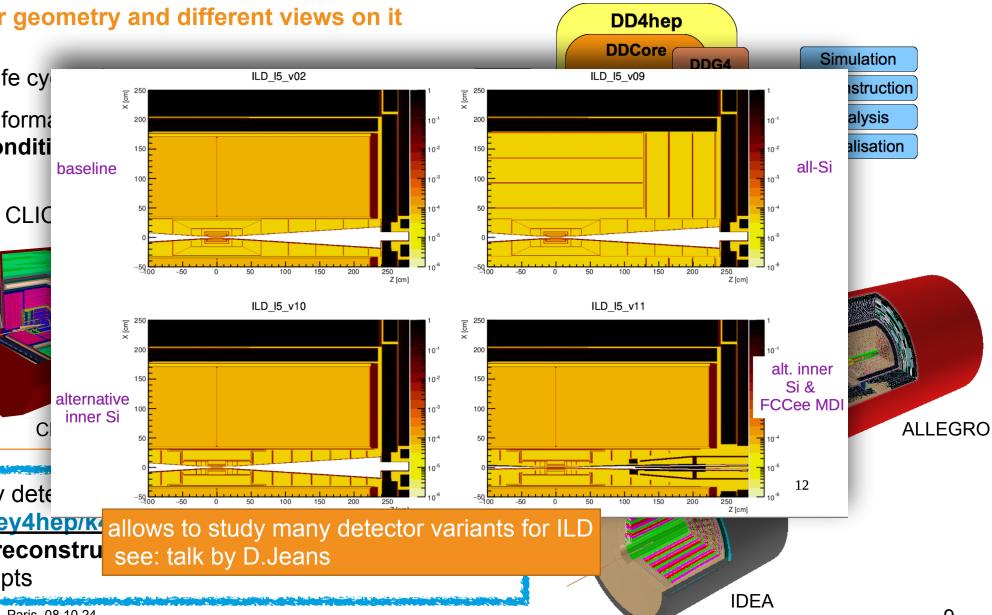
all future Higgs factory detector simulation models in **one package** <u>https://github.com/key4hep/k4geo</u>

=> allows to **re-use reconstruction code** (for similar sub detectors) across detector concepts

DD4hep: de facto industry standard



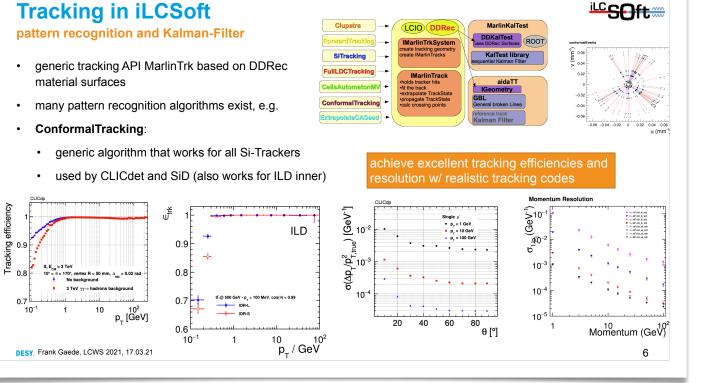
DD4hep geometry toolkit


defining the detector geometry and different views on it

- supporting the full life cy
- single source of information • reconstruction, conditi analysis
 - used by CEPC, CLIC

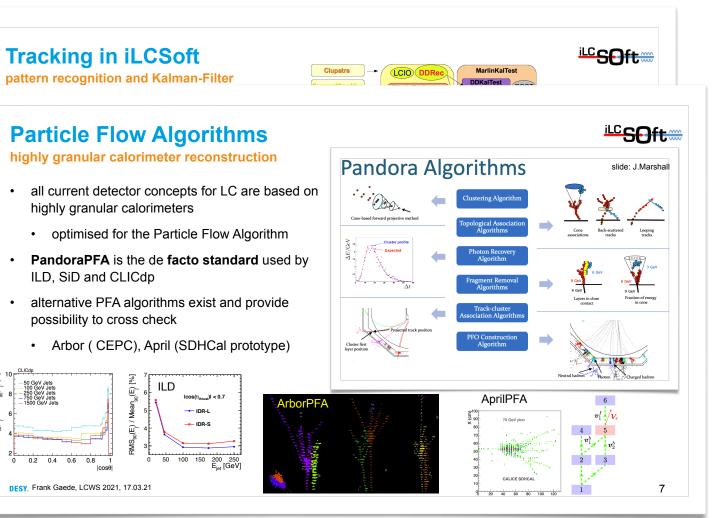
all future Higgs factory dete

https://github.com/key4hep/k4 => allows to re-use reconstru see: talk by D.Jeans across detector concepts

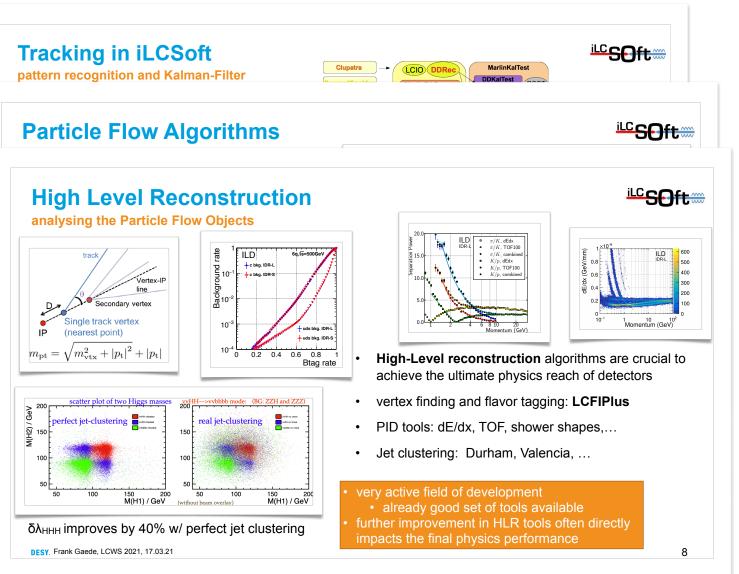

Developed over >15 years for linear collider detectors - e.g. ILD

- realistic detector models for incl. • tracking/reconstruction geometry
- track reconstruction •
 - generic API for fitting algorithms
 - large number of pattern recognition algorithms

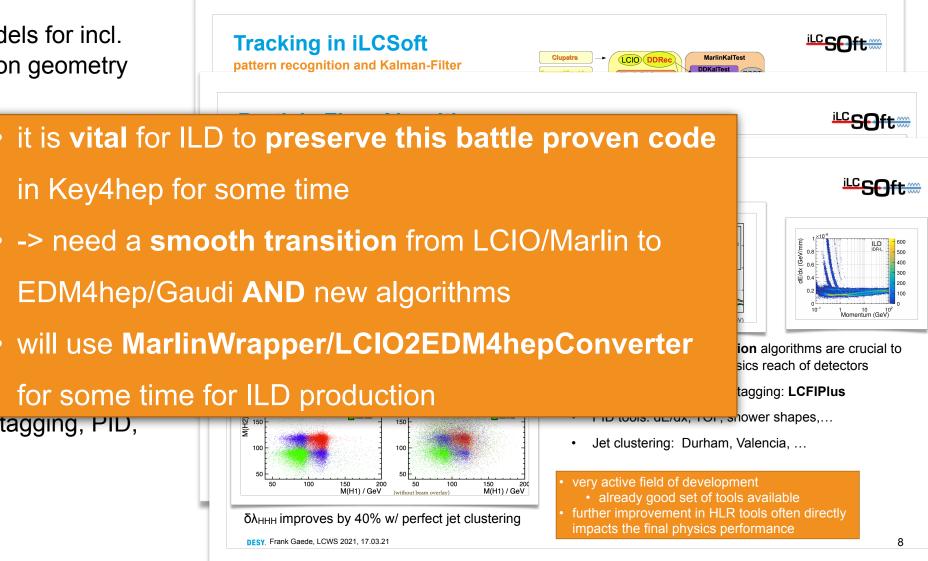
ConformalTracking:

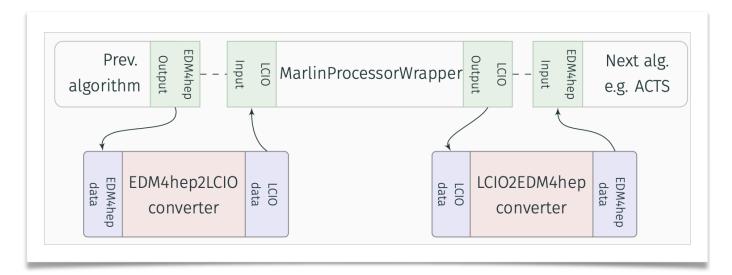

efficiency

Developed over >15 years for linear collider detectors - e.g. ILD


- realistic detector models for incl. tracking/reconstruction geometry
- track reconstruction
 - generic API for fitting algorithms
 - large number of pattern recognition algorithms
- particle flow algorithms
 - PandoraPFA and Arbor, AprilPFA

Developed over >15 years for linear collider detectors - e.g. ILD


- realistic detector models for incl. tracking/reconstruction geometry
- track reconstruction
 - generic API for fitting algorithms
 - large number of pattern
 recognition algorithms
- particle flow algorithms
 - PandoraPFA and Arbor, AprilPFA
- high level reconstruction
 - jet finding, flavor tagging, PID, TOF,...


Developed over >15 years for linear collider detectors - e.g. ILD

- realistic detector models for incl. tracking/reconstruction geometry
- track reconstruction
 - generic API for
 - large number of recognition algo
- particle flow algorith
 - PandoraPFA ar
- high level reconstru
 - jet finding, flavor tagging, PID, TOF,...

K4MarlinWrappper

the vision: mix and match Marlin and Gaudi algorithms

- in a transition phase algorithms developed in the new EDM4hep/Gaudi world can gradually replace older algorithms
 - e.g. eventually one might want to replace track fitting with ACTS also for LC detectors
- some technicalities are address under-the-hood via k4EDM4hep2LcioConv

all existing (high level) reconstruction algorithms as Marlin processors fully available in Key4hep !

ILD Standard Reconstruction

now smoothly runs in in Key4hep

- translation of *MarlinReco.xml* to GAUDI python steering file *ILDReconstruction.py*
- plan to use this as new standard (soon ?)

ILD standard reconstruction in Key4hep

- All configuration available from C iLCSoft/ILDConfig
- Everything that works in iLCSoft also works in Key4hep!

Marlin MarlinStdReco.xml --global.LCIOInputFiles=<input-file>

• Now also with Gaudi

k4run ILDReconstruction.py --inputFiles=<input-file> [...]

- Works with EDM4hep and LCIO inputs
- EDM4hep output by default, LCIO output via --lcioOutput=[true|only]
- Facilitates collaboration with other projects, e.g. CLD
- Full migration of all workflows will take some time but process started
 - Some new developments already done exclusively in Gaudi configuration

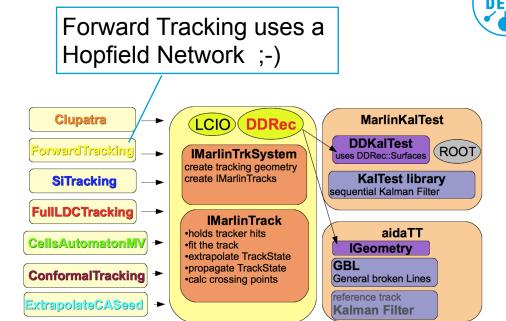
🗅 DESY 🗋 ilcsoft 🗋 GridNAF 🗋 AIDA 💮 FLC	🎉 MyHome 🚦	🗲 LEO English/Germa 🗋 CERN 🗋 HSF 💮 VOMS Admin > ilc 🗋 other 🔅 Most V	/isited 🚿 🗋 Of		
• Files	ILDConf	ig / StandardConfig / production / ILDReconstruction.py			
ी ⁹ master → + Q	Code	Blame 383 lines (333 loc) · 11.5 KB	w [] ± 🖉		
	228				
Q Go to file	229	<pre>ecal_technology = CONSTANTS["EcalTechnology"]</pre>			
s 🖿 shish	230 231	<pre>hcal_technology = CONSTANTS["HcalTechnology"]</pre>			
>github	231	<pre># identify specified detector model</pre>			
> 📄 IsolatedLeptonTagging	233	<pre>if reco_args.compactFile:</pre>			
> LCFIPlusConfig	234	<pre>det_model = Path(reco_args.compactFile).stem</pre>			
- C	235	else:			
 StandardConfig/production 	236	<pre>det_model = reco_args.detectorModel</pre>			
> 📄 BgOverlay	237	# load relevant tracking			
> Calibration	238 239				
Calibration	235				
> 📄 CaloDigi	241				
> Config	242	sequenceLoader.load("Tracking/TrackingDigi")			
	243	<pre>sequenceLoader.load("Tracking/TrackingReco")</pre>			
> 📄 Documentation	244				
> 📄 Examples/bbudsc_3evt	245	<pre>if not reco_args.trackingOnly:</pre>			
> 🗖 Gear	246 247	sequenceLoader.load(f"CaloDigi/{ecal_technology}Digi") sequenceLoader.load(f"CaloDigi/{hcal_technology}Digi")			
/ Geal	248	<pre>sequenceLoader.load("CaloDigi/FcalDigi")</pre>			
> 📄 HighLevelReco	249	<pre>sequenceLoader.load("CaloDigi/MuonDigi")</pre>			
> IsolatedLeptonTagging/weights	250				
	251	<pre>if reco_args.perfectPFA:</pre>			
> LCFIPlusConfig	252	<pre>sequenceLoader.load("ParticleFlow/PandoraPFAPerfect")</pre>			
> 📄 PandoraSettings	253	else:			
	hms	rted to develop new (or steering variants) in /			
			15		

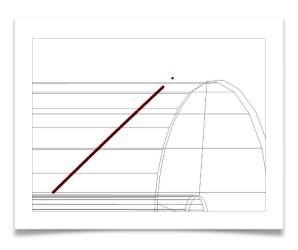
Ē

T.Madlener

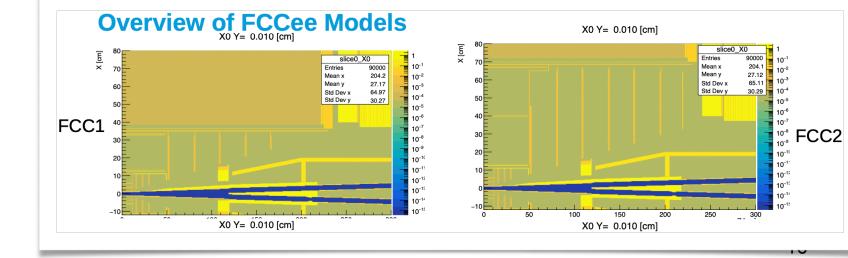
ILDConfig/StandardConfig/produx

+

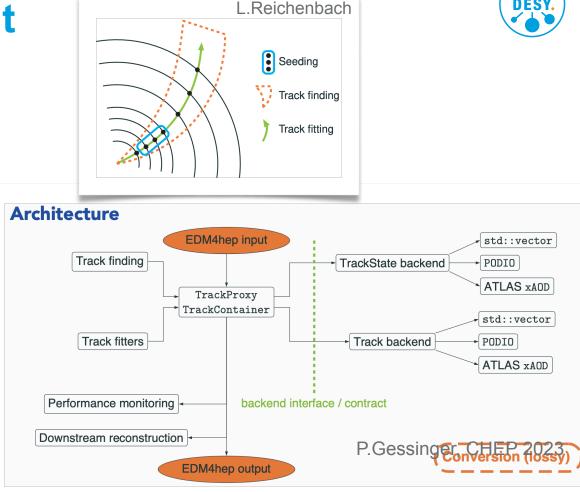

○ A https://github.com/iLCSoft/ILDConfig/blob/master/StandardConfig/prc ☆


Reconstruction for ILD@FCCee

combining simulation models and tracking algorithms


- ILD models for FCCee w/ TPC, FCC-MDI (mask) and CLD inner Si-Tracking
- can run *ConformalTracking* for Si-tracking and *Clupatra* for TPC tracking
- done using MarlinWrapper and ILDReconstruction.py
 - combining tracks is work in progress...
 - => maybe write this in GAUDI ?

V.Schwan, D.Jeans

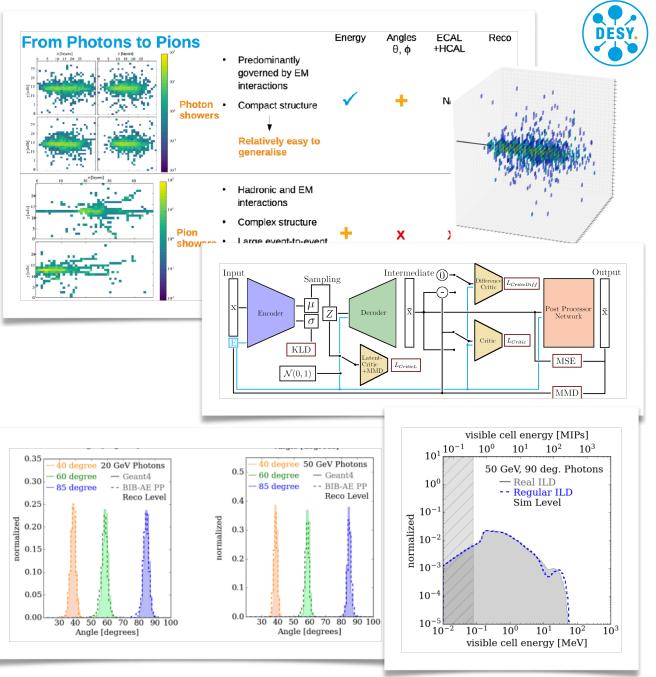


ACTS - A Common Tracking Toolkit

used in Key4hep

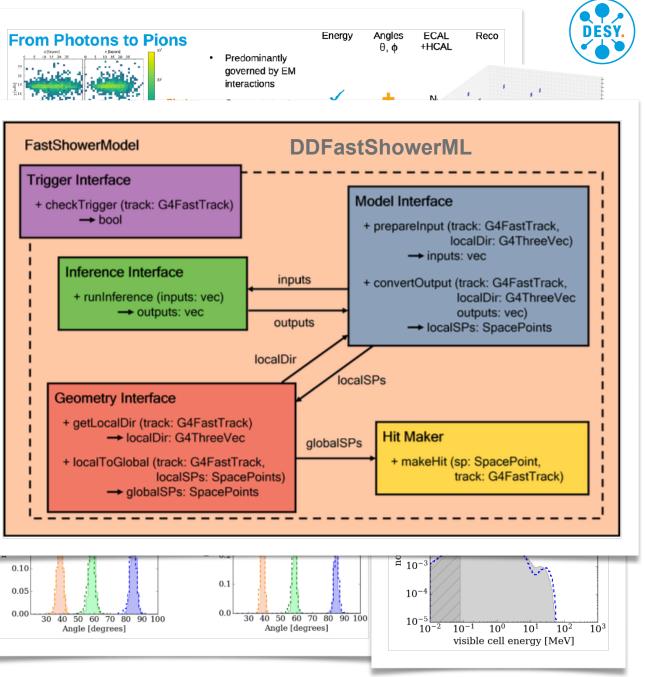
- **ACTS** tracking toolkit is the the current choice for track • fitting (and finding) in Key4hep
- new package k4ACTSTracking provides ACTS fitter •
 - implemented as GAUDI algorithm
 - uses DD4hep geometry
- first implementation of TrueTrackfinder for CERN OpenDetector
- successfully used for MuonCollider w/ handcrafted tracking • geometry

ongoing work on **automatic** and **transparent** construction of **tracking geometry** for all detectors in k4geo (Key4hep)

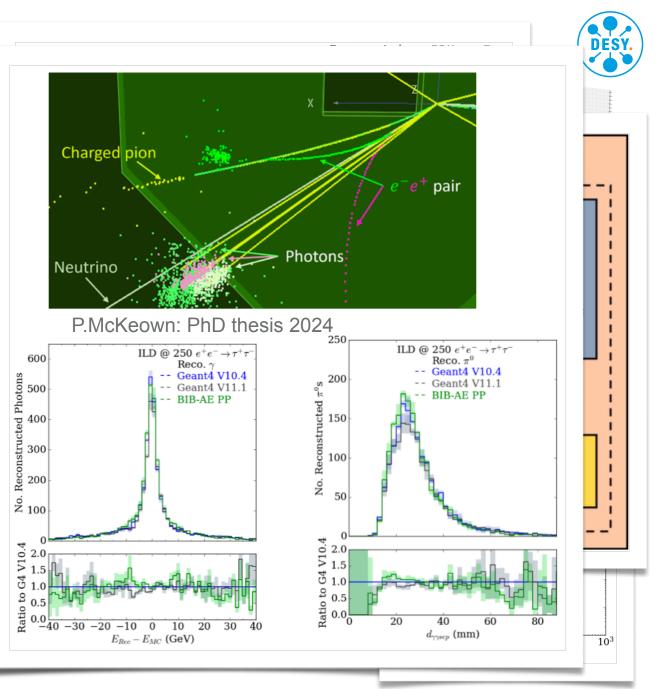


 might eventually benefit from this implementation expect significant effort to adapt to ILD tracking (w. TPC - cylinders) and all pattern recognition

probably more a **midterm** project


generative ML for fast shower simulation

- shower generation with ML offers great potential O(10e3) for faster and more sustainable simulation in HEP
- DESY/UHH QU group studying many generative models: (W)GANs, VAE, BIB-AEs, Normalising Flows, Point Cloud Diffusion Models,...
- achieve high fidelity on individual physics distributions


generative ML for fast shower simulation

- shower generation with ML offers great potential O(10e3) for faster and more sustainable simulation in HEP
- DESY/UHH QU group studying many generative models: (W)GANs, VAE, BIB-AEs, Normalising Flows, Point Cloud Diffusion Models,...
- achieve high fidelity on individual physics distributions
- developed DDFastShowerML library in Key4hep to transparently call ML inference during full simulation with DDG4/Geant4

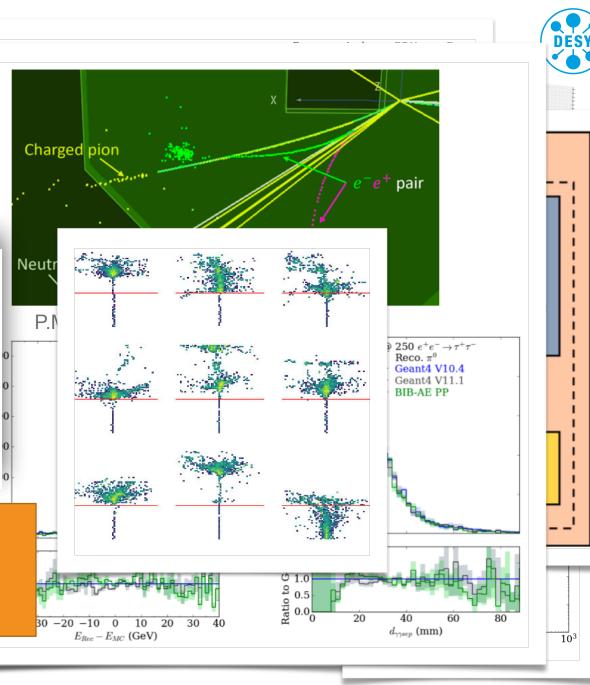
generative ML for fast shower simulation

- shower generation with ML offers great potential O(10e3) for faster and more sustainable simulation in HEP
- DESY/UHH QU group studying many generative models: (W)GANs, VAE, BIB-AEs, Normalising Flows, Point Cloud Diffusion Models,...
- achieve high fidelity on individual physics distributions
- developed DDFastShowerML library in Key4hep to transparently call ML inference during full simulation with DDG4/Geant4
- allows for realistic benchmarking of ML fastsim on real physics observables after full reconstruction

generative ML for fast shower simulation

х-у

 shower generation with ML offers great potential O(10e3) for faster and more sustainable simulation in HEP

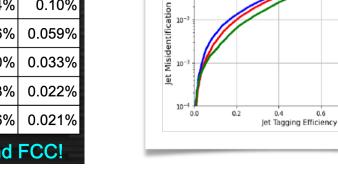

x-z

y-z

- DESY/UF models: (' Flows, Pc
- achieve h distributio
- develope to transpa.

ongoing work:

 apply CaloClouds diffusion model to CMS HGCal and use for hadronic showers in ILD



Flavour tagging with deep learning methods

- implemented ParticleTransformer flavour tagging for ILD ٠
 - achieve dramatically better results than LCFIPlus
- observe strange improvement w/ more training data at FCC -> to be studied !
- framework (Marlin/Gaudi?) inference work in progress
- started to look into strange tagging

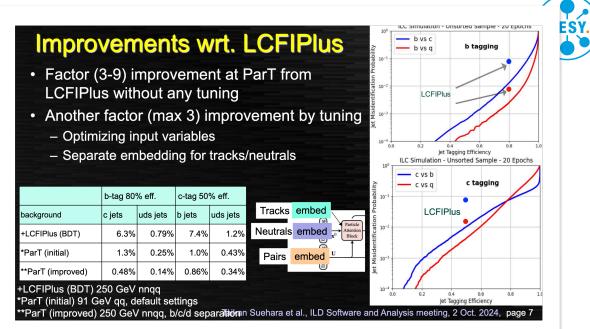
Sample / sample size	b-tag 80% eff.		c-tag 50% eff.	
background	c jets	uds jets	b jets	uds jets
ILD full-sim 1M (optimized)	0.48%	0.14%	0.86%	0.34%
FCCee Delphes 1M (reduced)	0.47%	0.12%	0.64%	0.10%
FCCee Delphes 1M (full)	0.21%	0.054%	0.36%	0.059%
FCCee Delphes 4M	0.045%	0.025%	0.20%	0.033%
FCCee Delphes 6M	0.014%	0.010%	0.13%	0.022%
FCCee Delphes 8M	0.007%	0.006%	0.076%	0.021%
We see mild consistency between ILD and FCC!				

DESY, Frank Gaede, ILD Meeting 2024, Paris, 08.10.24

Probability

10

s vs g


s vs g


0.6

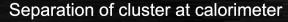
ILD w/ cpid

ILD w/ truth

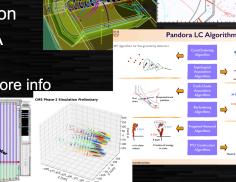
T.Suehara et al

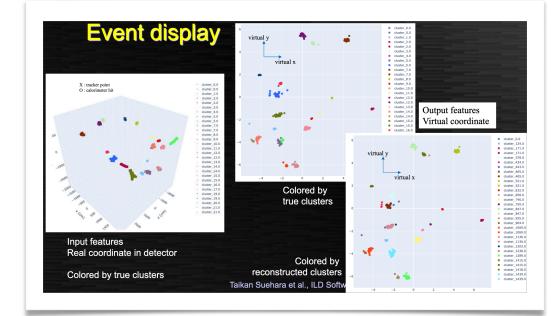
22

T.Suehara



AI/ML in Key4hep


PFA with ML


- started to develop deep neural networks for particle flow - partly based on CMS HGCal
 - using GravNet and Object Condensation
- after early, promising results made significant progress

- Charged or neutral cluster
- Essential for jet energy resolution
- Current algorithm: PandoraPFA
- Combination of various process
- Not easy to optimize or adding more info
- CMS HGCal clustering
- Similar to ILD calo
- Good for starting point

PFA: clustering algorithm Input: position/energy/timing of each hit Output: virtual coordinate and ß for each hit **Object Condensation (loss function)** GravNet arXiv:1902.07987 arXiv:2002.03605 The virtual coordinate (S) is derived $L = L_p + s_C (L_\beta + L_V)$ from input variables with simple MLP **Condensation point:** Convolution using "distance" at S The hit with largest β (bigger convolution with nearer hits) at each (MC) cluster Concatenate the output with MLP L.: Attractive potentia the condensation point of the same cluster and r ntial to the condensation Ilsive pote point of different clusters L_{β} : Pulling up β of the condensation point : Regression to output features

T.Suehara

AI/ML in Key4hep

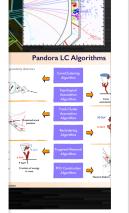
PandoraPFA

PandoraPFA

(ILCSoft truth)

iets

jets


PFA with ML

Particle flow with DNN: introduction

- started to develo • flow - partly bas
 - using GravN
- after early, prom • progress

- PFA: clustering a
- Input: position/energy/timing Output: virtual coordinate ar
- GravNet arXiv:1902.07987
- The virtual coordinate (S) is from input variables with sin Convolution using "d
- (bigger convolution with nea Concatenate the output with

Results on efficiency and purity						
Algorithm train/test	Electron eff.	Pion eff.	Photon eff.	Electron pur.	Pion pur.	Photon pur.
GravNet 10 taus/10 taus	99.1%	<mark>96.5%</mark>	99.0%	91.8%	<mark>98.9%</mark>	97.1%
PandoraPFA 10 taus	99.3%	<mark>94.0%</mark>	99.1%	91.8%	<mark>94.6%</mark>	97.2%
GravNet jets/jets	94.5%	93.1%	95.2%	94.6%	93.2%	92.4%

77.7%

97.7%

At least in our measure, performance of GravNet-based algorithm exceeds PandoraPFA → Promising as full PFA (but energy regression to be done) Definition of MC truth clusters needs to be tuned (see ILCSoft truth)

79.0%

96.4%

90.4%

95.5%

Taikan Suehara et al., ILD Software and Analysis meeting, 2 Oct. 2024, page 21

75.0%

97.1%

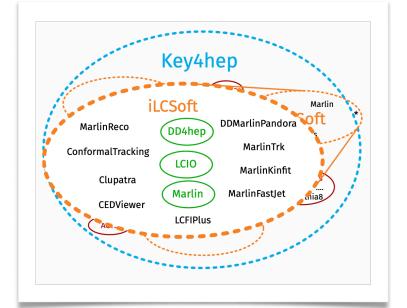
point of different cluster L_{β} : Pulling up β of the condensation point Regression to output features

80.2%

96.7%

Colored by true clusters	T

Colored by reconstructed clusters n Suehara et al., ILD So


1

90.6%

90.4%

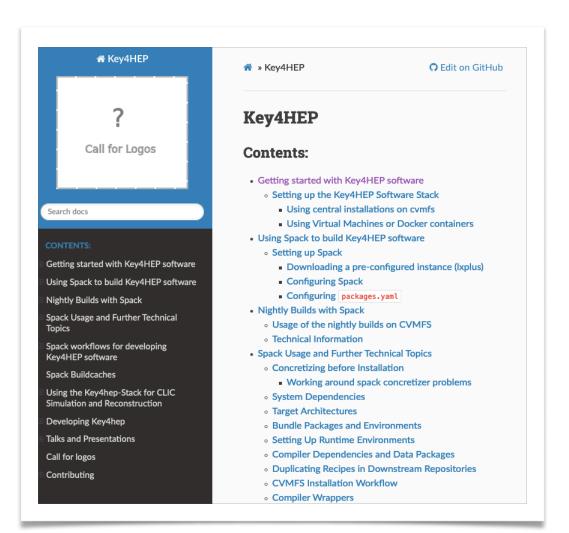
Summary and Outlook

- **Key4hep** started as a new future collider community wide effort in 2020 to put together a modern turnkey software stack
 - contributors: CEPC, CLIC, FCC, EIC, ILC, LUXE, Muon Collider ...
- iLCSoft and ILD software integral part of Key4hep from the start
- battle proven ILD standard reconstruction can be run in Key4hep w/ MarlinWrapper as before - or w/ EDM4hep output
- many **AI/ML activities ongoing** (fast sim and (high level) reconstruction)
 - eventually need to validate and integrate in ILD standard reconstruction

 Key4hep offers great opportunity to modernise ILD software stack AND collaborate w/ other Higgs factories - when studying ILD for FCC

• yet, limiting factor for all software developments: manpower

 need to somewhat balance the work on core tools and novel (AI) algorithms w/ ILD detector optimisation for FCC (and ILC)



pointers to documentation

entry points to Key4hep

- Key4hep GitHub Project
 - <u>https://github.com/key4hep</u>
- Key4hep main documentation page
 - <u>https://key4hep.github.io/key4hep-doc/</u>
- Doxygen available., e.g. for EDM4hep
 - <u>https://edm4hep.web.cern.ch/</u>
- iLCSoft Github Project
 - <u>https://github.com/ilcsoft</u>

