Searches for new exotic scalars at the ILC Analysis of the scalar particle S decay channel into invisible final states

Kamil Zembaczyński

Under the supervision of: Aleksander Filip Zarnecki

Faculty of Physics, University of Warsaw

September 11, 2024

Outline

- Introduction
- 2 Event generation
- Event pre-selection
- Variables reconstruction
- Sevent classification with boosted decision trees
- O Limits on the scalar production cross section

Introduction

Exotic scalar production in scalar-strahlung process is considered.

arXiv:1306.6352

Previously studied for $S \rightarrow \tau \tau$ (presented on 19th June 2024).

 $Z \rightarrow q\overline{q}$ and $S \rightarrow inv$ (possibly from DM sector) is assumed.

ILC H-20 running scenario at 250 GeV.

Event and detector simulation

Signal and background samples generated with WHIZARD $\ \ 3.1.2$ using built-in SM_CKM model.

Signal samples generated by varying H mass in the model and forcing its decay to 4 $\nu.$

All relevant 2 and 4-fermion final states for e^+e^- , as well as constributions from processes with beamstrahlung or EPA photons in initial state included in the background samples.

SM-like Higgs boson contribution included in the background simulation.

ISR and luminosity spectra for ILC running at 250 GeV taken into account

H-20 running scenario for ILC assumed with $\pm 80\%/\pm 30\%$ polarisation for $e^-/e^+ beams.$

"pure" initial states ($\pm 100\%$ polarisation) generated and mixed \Rightarrow only two combinations (LR and RL) relevant for most processes

Fast detector simulation with Delphes ILCgen model.

Generated luminosities and event weights - e^+e^- processes

	L_{gen} for generator polarisation [fb ⁻¹]					
background process	LR	RL	LL	RR		
$e^+e^- ightarrow qqqq$	69.9	103	-	-		
$e^+e^- ightarrow qq au au$	338	633	-	-		
$e^+e^- ightarrow qqll$	97.3	156	384	384		
$e^+e^- ightarrow qq u u$	93.9	254	-	-		
$e^+e^- ightarrow qq l u$	103	576	850	849		
$e^+e^- ightarrow qq au u$	107	1150	-	-		
$e^+e^- ightarrow au au II$	487	556	689	688		
$e^+e^- ightarrow au au au$	836	13500	-	-		
$e^+e^- ightarrow qq$	15.7	14.4	-	-		
$e^+e^- ightarrow qq ll u u$	1110	1880	-	-		

$$w = \frac{N_{exp}}{N_{gen}} = \frac{\sigma_{exp}N_{exp}}{L_{gen}} = \frac{L_{exp}}{L_{gen}}$$

→ ∃ →

э

Generated luminosities and event weights - $e^{\pm}\gamma$ and $\gamma\gamma$

processes

	L_{gen} for generator polarisation [fb ⁻¹]					
background process	LR	RL	LL	RR		
$e^{\pm}\gamma^{BS} ightarrow qq u$	4590	-	4510	-		
$\gamma^{BS} e^{\pm} ightarrow qq u$	4370	-	-	4720		
$e^{\pm}\gamma^{EPA} ightarrow qq u$	122	-	122	-		
$\gamma^{\it EPA} e^{\pm} o q q u$	121	-	-	121		
$\gamma^{BS}\gamma^{BS} o qq$	36.4	36	35.9	36.1		
$\gamma^{BS}\gamma^{EPA} ightarrow qq$	17.0	16.9	17.0	17.1		
$\gamma^{\text{EPA}}\gamma^{\text{BS}} o qq$	16.8	17.0	16.9	16.9		
$\gamma^{EPA}\gamma^{EPA} o qq$	10.2	10.2	10.2	10.2		

 $e^{\pm}\gamma$ and $\gamma\gamma$ luminosities include scaling factors for γ in the beam.

$$w = \frac{N_{exp}}{N_{gen}} = \frac{\sigma_{exp}N_{exp}}{L_{gen}} = \frac{L_{exp}}{L_{gen}}$$

Signal cross section

Cross section for $e^+e^- \rightarrow q\overline{q} S (q\overline{q} \sim Z)$ process at Whizard level as a function of scalar mass

Events pre-selection

Pre-selection cuts on number of objects:

- In no isolated electrons and muons
- Ino isolated photons
- Ino isolated photons in BeamCal
- only two jets

Pre-selection cuts on reconstructed variables:

- Reconstructed di-jet invariant mass in the range [74 GeV, 114 GeV]
- Ø Missing transverse momentum greater than 10 GeV

Events pre-selection

Reconstructed Z invariant mass for $\mathbf{e}_{I}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of 50 GeV.

э

Events pre-selection

Reconstructed missing transverse momentum for $\mathbf{e}_{I}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of **50 GeV**.

Event reconstruction

Reconstructed recoil mass - without cuts for $\mathbf{e}_{I}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of **50 GeV**.

Event reconstruction

for $\mathbf{e}_{l}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of **50 GeV**.

3 N K 3 N

Two jets taken as Z candidate

Variables used in classification:

- Z candidate invariant mass
- Z candidate energy
- missing transverse momentum
- cosine of the Z candidate polar angle
- angle between two jets
- invariant mass recoiling against Z candidate
- y_{23} and y_{34} variables from clustering algorithm

Reconstructed **Z** energy - with cuts for $\mathbf{e}_{I}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of **50 GeV**.

Reconstructed **angle between jets** - with cuts for $\mathbf{e}_{I}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of **50 GeV**.

Reconstructed cosine of Z polar angle - with cuts for $\mathbf{e}_{l}^{-}\mathbf{e}_{R}^{+}$ polarisation and scalar mass of 50 GeV.

Classification results

BDT response distribution for sgn and bkg events with most significant background process $qq\tau\nu$, for $\mathbf{e}_L^-\mathbf{e}_R^+$ polarisation and scalar mass of **50 GeV**.

September 11, 2024

95% C.L. limits on the production cross section

in units of the SM cross section for Higgs-strahlung process (with given scalar mass)

 $e_I^- e_R^+$ and $e_R^- e_I^+$ luminosities from ILC H-20 running scenario at 250 GeV

Systematic uncertainties

Seven normalization variations (4 lumi and 5 theory) considered. Significant impact of systematic uncertainties

13 / 20

Limits dependence on luminosity

95% C.L. limits on the production cross section

in units of the SM cross section for Higgs-strahlung process (with given scalar mass), with systematic effects

 $e_L^- e_R^+$ and $e_R^- e_L^+$ luminosities from ILC H-20 running scenario at 250 GeV

Previous results

Limits for $S \rightarrow inv$ are worse than $S \rightarrow \tau \tau$ - worse background rejection due to less kinematic constraints

Conclusions

- **()** Follow-up of the previously presented $S \rightarrow \tau \tau$ analysis
- Event selection and reconstruction was modified for invisible decay channel
- Additional background channels with initial state photons were included
- Boosted decision trees were used for classification
- **()** Limits for scalar production cross section were calculated
- Impact of beam polarisation and normalization uncertainties were considered

Backup - sample mixing and expected luminosities

	Generated sample								
	eLpR	eRpL	eLpL	eRpR					
	$(e_L^-e_R^+)$	$(e_R^- e_L^+)$	$(e_L^-e_L^+)$	$(e_R^- e_R^+)$					
Beam	Weight factor								
polarisation	$(1-P_{e^{-}})(1+P_{e^{+}})$	$(1+P_{e^{-}})(1-P_{e^{+}})$	$(1-P_{e^{-}})(1-P_{e^{+}})$	$(1+P_{e^{-}})(1+P_{e^{+}})$					
setting	4	4	4	4					
(-,+)	0.585	0.035	0.315	0.065					
(+, -)	0.035	0.585	0.065	0.315					
(-, -)	0.315	0.065	0.585	0.035					
(+,+)	0.065	0.315	0.035	0.585					
unpol.	0.25	0.25	0.25	0.25					
	Expected H-20 sample luminosities $[fb^{-1}]$								
(-,+)	526.5	31.5	283.5	58.5					
(+, -)	31.5	526.5	58.5	283.5					
(-, -)	31.5	6.5	58.5	3.5					
(+,+)	6.5	31.5	3.5	58.5					
unpol.	500	500	500	500					

< 行

∃ ⇒

э

Backup - validation

Expected number of events in *ith* bin: $\mu_i = b_i + \alpha s_i$

Pseudo-experiments generated for $\alpha = \alpha_{95\% C.L.}(50 GeV)$

Distribution of estimated α values

Backup - formulas

Expected number of events in *i*th bin:

$$\mu_i = \sum_{i=1}^{N_{bin}} b_i + \alpha s_i$$

Log-likelihood function:

$$I(\alpha) = \sum_{i=1}^{N_{bin}} (n_i \log \mu_i - \mu_i) - \sum_{i=1}^{N_{bin}} n_i!$$

Log-likelihood 1^{st} derivative:

$$rac{dl}{dlpha}(lpha) = \sum_{i=1}^{N_{bin}} \left(rac{n_i}{\mu_i} - 1
ight) rac{d\mu_i}{dlpha} \,(=0)$$

Log-likelihood 2nd derivative:

$$-\frac{d^2l}{d\alpha^2}(\alpha) = \sum_{i=1}^{N_{bin}} \frac{n_i}{\mu_i^2} \left(\frac{d\mu_i}{d\alpha}\right)^2 = \sum_{i=1}^{N_{bin}} \frac{s_i^2}{b_i} = \frac{1}{\delta_\alpha^2}, \ \alpha_{95\%C.L.} = 1.64 \cdot \delta_\alpha$$

→ ∃ →

э