

Status of TPC for CEPC Physics and Detector TDR

Huirong Qi

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences

Sept. 26th, 2024, LCTPC WP Meeting

- Status of CEPC TDR
- Motivation and physics requirements
- Technology survey and choices
- Some progress towards TDR
- Summary

Status of CEPC TDR

CEPC TDR defined as a CEPC reference TDR (CEPC ref-TDR)

First IDAC international review

- Date: 21-22, October, 2024 at IHEP in Beijing
- 11 experts in the field of HEP detectors (CERN, DESY, Edinburgh, CEA-Saclay, PSI,...)
 - Maxim will join this review meeting
- PPT presentation: Just covering the chapters by the person in charge

Some next steps

- The TDR document draft versions V0 : before 30, December.
- Second IDAC international review: January, 2025 in Hongkong (HKUST)
- The TDR document draft versions V1 : before 28, February.
- The TDR document will be released in June, 2025.

Status of CEPC TDR

This talk relates to the CEPC Physics and Detector Ref-TDR.

- Chapter 5: Gaseous tracker
- Draft of content listed \rightarrow

Chapter	5 Gas	seous trackers			
5.1	Physics	requirements and detection technology			
	5.1.1	Physics requirements of Higgs and Tera-Z			
	5.1.2	Technology choice and the baseline track detector			
5.2	Pixelat	ated readout TPC detection			
	5.2.1	TPC detector and readout electronics			
	5.2.2	Mechanical and cooling design			
	5.2.3	Challenges and critical R&D			
	5.2.4	Detector modules toward the validation prototype			
5.3	Perform	nance of TPC tracker			
	5.3.1	Overall of the simulation framework			
	5.3.2	Spatial resolution and PID performance			
	5.3.3	Improvement using the machine learning algorithm			
5.4	Alterna	mative track detector of Drift Chamber in Tera-Z			
	5.4.1	PID for high luminosity Z pole at $2T \dots \dots \dots$			
	5.4.2	Performance and critical R&D			
5.5	Cost es	timation			

Physics requirement

- CEPC operation stages in TDR: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- Phys. Requirements of the track detector
 - Thousands of hits with high spatial resolution compatible with PFA algorithm (low X_0)
- Beneficial for jet & differential at higher energy
 - Highly requirements for excellent JOI & PID resolution (in Jets) : Provide dE/dx + dN/dx ~ 2-3%
 - BMR < 4% & pursue 3%</p>

Technology survey and our choices

3D high precision resolution track reconstruction with the Ultra light material budget

- High precision resolution ($\sim 100 \ \mu m$) with thousands hits per track
- High momentum resolution (~10⁻⁴ GeV/c) and High capabilities for Particle Identification (~3%)
- Utilize the timing of drift in the z-direction (nano-second)
- A magnetic field parallel to the electric field direction (Higgs: 3T, Tera-Z: 2T)
- Easily installation and replacement modular design
- Considering the technical challenges, performance, risk of detector construction

Baseline track detector: Pixelated TPC

- The track detector system: Silicon combined with gaseous chamber as the tracker and PID
 - Pixelated readout TPC is as the **baseline track detector** in CEPC ref-TDR.
 - Pixelated readout TPC as the main track (MTK) from radius of 0.6m to 1.8m
 - DC is as the **alternative** track detector at Tera-Z.

Technical challenges and R&D efforts

Main Technical Challenges

• Pixelated readout TPC (**Baseline**)

- Material budget at endcape/barrel $\sqrt{}$
- Occupancy and hit density at Tera-Z $\sqrt{}$
- Ion backflow suppression $\sqrt{}$
- Running at 2 Tesla √
 Improved PID √
- **Reasonable channels(ongoing)**
- **Reasonable power consumption (ongoing)**
- DC (Alternative at Tera-Z)
 - dN/dx for PID $\sqrt{}$
 - **Risk the 5.8m wires and tension (ongoing)**

Critical key

issues

TPC prototype R&D efforts and results

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to **TPC prototype R&D for Higgs and Tera-Z**
- Achievement by far:
 - **IBF \times Gain ~1 @ G=2000** validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

Ion suppression TPC module R&D

Tracks reconstruction ¹¹

Highlights of TPC prototype R&D

- Highlights of CEPC pad readout TPC R&D and toward the pixelated readout TPC
 - Massive production and assemble MPGD lab has been setup at IHEP ٠
 - TPC prototype integrated 266nm UV laser tracks has been studied and analyzed the UV laser • signal, all are pretty good to Higgs run.
 - **Easy-to-install modular design** of Pixelated readout TPC for CEPC TDR ۲

Activity international collaboration

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$
 - Collaboration implement improvements in a pixelated readout TPC for CEPC TDR

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Detailed design and performance of Baseline: TPC

Detailed design of mechanics

Barrel iron yok

Magnet

Barrel HCAL

-R806 -R625

15

- Track detector system: Silicon combined with gaseous detector as the tracker and PID.
 - Pixelated readout TPC is as the baseline track detector in CEPC ref-TDR.

Full Simulation of Pixelated readout TPC

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 120cm drift length can be achieved
- dN/dx significantly **improved PID resolution**

Optimization of the readout size

Timepix (55µm×55µm) readout TPC prototype has been validation four times on DESY beams.

- Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power for pixelated readout)
- Simulation results showed that readout size can be optimized at 300µm-500µm.
 - Reasonable readout channels and power consumption need to be studied
 - Focused on 100mW/cm² and 500µm readout for CEPC refTDR (2-phase CO₂ cooling OK!)

Ultra-light barrel and FEA analysis

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- **Ultra-light material** of the TPC barrel (QM55 CF) : $0.59\% X_0$ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
- Optimization of the connection back frame of the endcap (on going)

Material budget of TPC barr	re	baı	2C	TP	of	lget	bud	rial	Mate
-----------------------------	----	-----	----	----	----	------	-----	------	------

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

• Low material of the TPC endcap 15%X_a in total,

1	15%X ₀ ir	n total, including
Readout plane, front-end-eleo	ctronics	4%
Cooling		2%
Power cables		9%

Optimization of Gas flow in Chamber

pathlines-1

- Optimized design gas uniformity of **99% or more** in large TPC chamber
 - **8** Ø10mm gas inlets + **8** Ø10mm gas outlets (opposite, 90°/endcap)
 - Working gas flow: 300 500 mL/min

Velocity Vector 1

- **Online monitoring system**: O_2 (ppm) and water H_2O (ppm)
- Friendly the gases recycle system and mesh cathode considered

Optimized inlet and outlet in Chamber

Simulation of gas flow and uniformity distribution in TPC Chamber

Detailed design of electronics and BEC

Pixel Readout Electronics: TEPix development

- Multi-ROIC chips + Interposer PCB as RDL
- Four-side bootable

TEPix: Low power Energy/Timing measurement

- LPower Consumption ~ 0.5mW/ch
- Timing ~ <1LSB(10ns)
- Noise ~ < 300e (even high gain)

FEE ASIC: TEPIX—Test Results in May ²⁰

Validation and commission of TPC prototype

• **R&D on Pixelated TPC readout for CEPC TDR**

- Pixelated readout TPC ASIC chip developed and 2nd prototype wafer has done and tested.
- The TOA and TOT can be selected as the initiation function in the ASIC chip
- Prototyping pixelated readout TPC detector
 - The validation of the prototype assembled for beam test

Photos TPC modules assembled for the beam test

Photo and layout of ASIC Chip R&D for TPC

Progress of TPC prototype

- Completed testing of TEPIX, a pixel-based readout chip to **determine that the chip is operational**.
 - Inputted square wave signals, external trigger mode
 - Chip outputs data functional and the data taking per channel.

Development of the data analysis: Cluster Finding

- The preliminary simulation data analysis are under development including the drift, diffusion and avalanche of the detector. (On-going)
 - 10 104 10 10 x [cm]

3、简单聚类过程实现, ClusterFinder

x [cm]

cluster

y [cm]

Working plan

- Short term working plan (before June 2025)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation using FEE
 - mechanics, manufacturing, beam testing, full drift length prototype
 - Performance of the simulation and optimize deep learning algorithm
- Long term working plan (about three years)
 - Development of the pixelated TPC prototype with low power consumption FEE ASIC
 - Beam test collaborated with LCTPC collaboration
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion along the drift length

Summary

- TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e⁺e⁻ colliders, espial to the high luminosity Z pole run at future e⁺e⁻ collider. DC will be as the alternative detector at Tera-Z.
- Pixelated TPC is choose as the baseline detector as main track in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4 at IHEP. Some validation of TPC prototype have been studies.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences. All will input to CEPC ref-TDR in next some months.

CEPC WS 2024

The 2024 International Workshop on the High Energy Circular Electron Positron Collider

Thank you for your attention!

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences