

Higgs decays to long-lived particles with the ILD

J. Klamka, A. F. Żarnecki University of Warsaw

jan.klamka@fuw.edu.pl

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
 - → <u>complementary region</u> could be probed at e^+e^- colliders (small masses, couplings, mass splittings)
 - \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD especially promising with a <u>TPC</u> as the main tracker
 → study based on full simulation

- Study such challenging signatures from the **experimental perspective**
 - \rightarrow experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

Framework and signatures

 $\sqrt{s} = 250 \,\mathrm{GeV}$

As a challenging case (small boost, low-pT final state) we considered:

ightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^*
ightarrow \mu\mu$

Framework and signatures

 $\sqrt{s} = 250 \,\mathrm{GeV}$

As a challenging case (<u>small boost, low-pT final state</u>) we considered:

 \rightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^* \rightarrow \mu \mu$

The opposite extreme case, (<u>large boost, high-pT final state</u>)

 \rightarrow light pseudoscalar LLP $a \rightarrow \mu \mu$

Very simple vertex finding (inside the TPC) based on a distance between track pairs

Backgrounds

Two types of backgrounds considered separately:

- Overlay events, as a standalone background
 - \rightarrow Very tight selection including vertex quality cuts (fake vtx rejection) and cuts on total vtx p_T
 - \rightarrow Overlay suppression ~10⁻¹⁰, but for Higgs decays overlay negligible (more details later)
- High- p_T physics events with sources that survive overlay selection:
 - \rightarrow Decays of kaons, lambdas, photon conversions (V0s)

High-p_T background

- Matching with V0Finder does not remove sufficient events
- Also semileptonic K0 decays, or poorly reconstructed tracks survive
 - → Additional cuts on invariant mass are applied, two working points: **standard** and **tight** (tight involving also **isolation** criterium)

Backgrounds occur mainly inside jets, so we consider (hard) e^+e^- and $\gamma\gamma$ processes with jets in final state

Selection eff. depends on number of jets, so:

Estimate selection efficiency based on full simulation

Use qq efficiency for the remaining processes

$\operatorname{sgn}(\operatorname{P}(\operatorname{e}^{-}), \operatorname{P}(\operatorname{e}^{+}))$	(-,+)	(+, -)	(-,-)	(+,+)		
channel	σ [fb]					
qq	$127,\!966$	$70,\!417$	0	0		
qqqq	$28,\!660$	970	0	0		
$\mathrm{q}\mathrm{q}\ell \nu$	29,043	261	191	191		
$ZZ \to qq\ell\ell, qq\nu\nu$	838	467	0	0		
$Z\nu_e\nu_e o qq\nu_e\nu_e$	454	131	0	0		
$\text{Zee} \rightarrow \text{qqee}$	$1,\!423$	$1,\!219$	$1,\!156$	$1,\!157$		
process	BB	BW	WB	WW		
hard $\gamma^{B/W}\gamma^{B/W}$	$42,\!150$	90,338	90,120	71,506		

Cross section limits

- Tight selection: dashed line, standard selection: solid line
- A wide range of models with heavy scalars with small mass splittings, or light pseudo scalar particles, can be excluded down to 0.1 fb arXiv:2409.13492

25 September 2024

Higgs decays to LLPs

Higgsstrahlung with H(125) decay to two long-lived scalars

Generated using the Triple Real Singlet Higgs model with fixed lifetimes of s

Generated scenarios:

$$m_s = 400 \text{ MeV}, c\tau = 10 \text{ mm}$$

$$m_s = 2 \text{ GeV}, c\tau = 10 \text{ mm}$$

$$m_s = 50 \text{ GeV}, c\tau = 1 \text{ m}$$

$$m_s = 60 \text{ GeV}, c\tau = 1 \text{ m}$$

 $Z \rightarrow \nu\nu$, s $\rightarrow \mu\mu$ decays used to simplify the simulation Note: here overlay not added before the reconstruction

Use the same analysis procedure, but further optimise for this channel

This time add constraints to optimise the search for HZ \rightarrow Hvv channel

 \rightarrow we expect at least one displaced vertex and nothing else

On top of all previous cuts, in each event require no prompt tracks with:

- $p_T > 2 \text{ GeV}$
- $R_{\rm fhit} < 20$ mm (barrel), or $R_{\rm fhit} < 155$ and $215 < |Z_{\rm fhit}| < 225$ (endcap)
- |d0| < 10 or |z0| < 10

In addition, for each vertex require total $p_T^{vtx} > 10$ GeV of tracks forming the vtx \rightarrow allows to fully neglect hard $\gamma\gamma$ and overlay events

Because the statistics in samples becomes very low, assume the cuts above are orthogonal to cuts on invariant mass windows corresponding to V0 particles

 \rightarrow estimate the efficiencies independently and combine

This time add constraints to optimise the search for HZ \rightarrow Hvv channel

 \rightarrow we expect at least one displaced vertex and nothing else

On top of all previous cuts, in each event require no prompt tracks with:

- $p_T > 2 \text{ GeV}$
- $R_{\rm fhit} < 20$ mm (barrel), or $R_{\rm fhit} < 155$ and $215 < |Z_{\rm fhit}| < 225$ (endcap)
- |d0| < 10 or |z0| < 10

In addition, for each vertex require total $p_T^{vtx} > 10$ GeV of tracks forming the vtx \rightarrow allows to fully neglect hard $\gamma\gamma$ and overlay events

Because the statistics in samples becomes very low, assume the cuts above are orthogonal to cuts on invariant mass windows corresponding to V0 particles

 \rightarrow estimate the efficiencies independently and combine

Even with this approach, the number of events after the above cuts is 0 in all simulated samples \rightarrow conservatively assume 3 events remaining in each MC sample (95% C.L.) \rightarrow ~16 bg. ev. expected

Vertex finding results

m _s	0.4 GeV	2 GeV	50 GeV	60 GeV
Efficiency (standard)	7.8%	52.2%	34.6%	18.5%
Efficiency (tight)	0%	52.2%	34.3%	18.1%

• Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm

 Tight selection cut on invariant mass assuming tracks are pions/electrons, M > 700 MeV, "kills" the 400 MeV scenario, the rest of scenarios remain almost intact

95% C.L. limits

- As before: event reweighting performed to obtain limits for a range of scenarios
- Branching ratios at 10^{-4} can be probed even up to decay lengths above 10 m

95% C.L. limits

- ILD @ ILC250 can improve the CMS reach for higher lifetimes thanks to TPC acceptance, but does not go down with the current limit
- This could be improved by searches using vertex detector and more data at higher energies

95% C.L. limits

- With different assumptions, CMS can provide even better limits
- For higher masses, ILD again improves the reach for higher lifetimes

Summary

- LLP analysis extended to Higgs decays to long-lived scalars
- Channel-specific cuts added assuming HZ \rightarrow Hvv decay
- Conservative estimates show ILD @ ILC250 can extend existing limits to higher lifetimes with minimal assumptions
- In more optimistic scenario with zero-background regime, the limits could be improved by almost an order of magnitude

BACKUP

25 September 2024

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - \rightarrow use both track direction (charge) hypothesis for vertex finding
 - \rightarrow consider opposite-charge track pairs only
 - \rightarrow select pair with closest starting points
- Reconstruct vertex in between points of closest approach of helices
 - \rightarrow Require distance < 25 mm

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are:

- 1.55 γγ → low-p_T hadrons events
- $O(10^5)$ incoherent e^+e^- pairs, only a small fraction enters detector

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V^os and photon conversions)
 - \rightarrow significant background
 - Can be suppressed using cuts on the track pair geometry and $p_{_{\rm T}}^{_{_{\rm Vtx}}}>1.9~\text{GeV}$
 - Total expected reduction factor at the level of $\sim 10^{-9}$

Vertex finding results

- Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality) and mass of a (final state boost)
- A dedicated approach could enhance sensitivity for $\Delta m_{\text{AH}}=1$ GeV and $m_{\text{a}}=300$ MeV scenarios

TIVERS,

Final selection – pT

- We consider $yy \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow$ had. with floating normalisations

pT of the dilepton system

pT of the dilepton system

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that signal tracks should come out of a single point → reference points should be close
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices

- d_{ref} distance between reference points (TrackStates / first hits)
- d_c distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation

25 September 2024

Jan Klamka, Higgs decays to LLPs @ ILD

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Norm = number of events, scaled by corresponding Poisson expectation values

For small correlations *r* between *x* and *y*, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$ (slide 5), assuming **30%** correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

25

Combined cut efficiency $x > 2 \cap y > 3$