Higgs to ss study

First year graduate student at Iwate University Ryuki Sugawara

- Increase the number of events (polarization is only right)
- The backgrounds of 4-fermion and 2-fermion are analyzed in the same way.

Hadronic channel (qqH)

This is the signal event

Although the number of signal events is larger than in other processes, the number of background events is also larger, and efficient removal of background events is required.

There are four jets, two from the Higgs and two from the boson, and it is also important to correctly select the Higgsdecayed jet in the reconstruction.

reference document:東北大学大学院理学研究科 物理学専攻 吉田幸平「国際リニ アコライダーにおける ヒッグス粒子の崩壊分岐比測定の研究」 (1)Thrust processor is used for signal events.

(2)Reconstruct with 4 jets.

(3)Put data in a root file.

(4) Perform analysis on that root file.

(5) Analyze in the same way in the background.

Hadronic channel (qqH)

Used Data:rv02-02.sv02-02.mILD_I5_o1_v02.E250-SetA.I402011.Pqqh.eL.pR.n000.d_dstm_15095_0.slcio

It is reconstructed with 4 jets, so the peak is at 250 GeV.

<u>4-jet sorting(signal)</u>

The jets were chosen so that χ^2 in this equation is the smallest.

$$\chi^{2} = \left(\frac{M_{j_{1}j_{2}} - M_{Z}}{\sigma_{Z}}\right)^{2} + \left(\frac{M_{j_{3}j_{4}} - M_{H}}{\sigma_{H}}\right)^{2}, \qquad \overset{\text{*}}{\text{$M_{Z} = 91.2 \text{ GeV}, M_{H} = 125 \text{ GeV}$}_{\sigma_{H}} = 4.4 \text{ GeV} \sigma_{Z} = 4.7 \text{ GeV}$$

Type of Cut

CM energy (GeV)	250		
Cut names	condition	Sig.	Bkg.
Generated		52507	45904900
χ^2	$\chi^2 < 10$	32447	2608980
# of charged tracks	$N_{chd} > 4$	25281	1120950
Y_{34} value	$-\log(Y_{34}) > 2.7$	25065	1002125
thrust	thrust < 0.9	24688	935950
thrust angle	$ \cos\theta_{\rm thrust} < 0.9$	21892	696201
Higgs jets angle	$105^o < \theta_H < 160^o$	20062	622143
Z di-jet mass (GeV)	$80 < M_Z < 100$	16359	411863
H di-jet mass (GeV)	$105 < M_H < 130$	16359	411863
Likelihood ratio	LR > 0.375	13726	166807
Significance (Efficiency)	$S/\sqrt{S+B}$	32.3	(26.1%)

H. Ono [Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider]

These are the cuts in this issue of the Hadron Channel.

made the cut this time χ squared

$$\chi^{2} < 10$$

Cuts were made with a χ -square of this equation less than 10.

	reference	mydata
generated	52507	
χ² cut	32447	
decrease	38%	%

$$\chi^2 = \left(\frac{M_{j_1 j_2} - M_Z}{\sigma_Z}\right)^2 + \left(\frac{M_{j_3 j_4} - M_H}{\sigma_H}\right)^2,$$

Ncharge > 4

The distribution of the number of charged tracks.

Used : MCParticleSkimmed MCPart charge By requiring the number of charged tracks, the *llll, vvqq, gg*, events are eliminated.

This graph shows the number of charge tracks for an event.

Ono'san made one cut per jet?

This is the number of cargo trucks per jet.

The Y value is used to determine how many jets are present.

The Y value is expressed by this formula.

$$Y_{kl} = \frac{2\min(E_k, E_l) (1 - \cos \theta)}{E_{vis}^2}$$

Reconstructed with 4 jets when -logY is less than 2.7 Background is also removed.

Background is not removed much.

<u>thrust < 0.9</u>

Thrust Vector

The vector T is called the thrust vector. The vector whose magnitude is T is called the thrust vector.

 \rightarrow The direction in which the visible charged particle or photon loses the most momentum

	reference	mydata
generated	25065	
Thrust Cut	24688	
decrease	1.5%	%

No significant differences were found between Mr. Ono's data and my data. Can greatly reduce background

The number of events is greatly reduced by the cut of χ squared and the cut of jet mass.

cut name	reference	%	my data	%
generated	52507	100	5600	100
χ2	32447	62	2215	40
charge tracks	25281	48	2215	40
Y value	25065	48	2126	38
thrust	24688	47	2096	37
thrust angle	21892	42	1892	34
Z di-jet mass	16359	31	1462	26
H di-jet mass	16359	31	1399	25

- Mixing polarization
- Adjustment of cut range

$\sigma_H = 16.28$, $\sigma_Z = 18.43$

 $\underline{\text{BG}}_{\chi^2} < 10$

<u>BG_Ncharge > 4</u>

BG_Y value < 2.7

<u>BG_ThrustAxis > 0.9</u>

	WW_hadronic	%	ZZ_hadronic	%
generated	10200	10200	9400	9400
χ2	1794	18	1874	20
charge tracks	1794	18	1874	20
Y value	1662	16	1745	19
thrust	1658	16	1726	18
thrust angle	1167	11	1420	15
Z di-jet mass	907	9	1092	12
H di-jet mass	850	8	1018	11