Tracking for the Modified ILD Detector Concept at the FCCee

3rd ECFA workshop on e+e- Higgs, Top & ElectroWeak Factories 9th October 2024 Frank Gaede, Daniel Jeans (KEK), Jenny List, Thomas Madlener, <u>Victor Schwan</u>

victor.schwan@cern.ch

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

My PhD Project in a Nutshell

* Modified ILD model...

- $\ast\ldots$ compatible with FCC requirements
- $\ast\ldots$ that mitigates backgrounds and other machine-related effects
- $\ast \ldots$ that can be assembled and maintained
- * Carry out a physics study with this detector model
 - * Sensitive to differences in machine-detector-interface (MDI)

* e.g. strongly forward-boosted

ILC vs FCCee

- * Different machine interface
- * Different backgrounds
 - * ILC: mainly beamstrahlung
 - FCC: synchrotron radiation, scattering and beam-gas interaction more relevant

U. PER PER PER Second S

From Daniel Jeans

Starting Point

- ILD (for ILC) ♦ ILC MDI
 - * Hybrid tracking layout

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

_

TPC

FCCee MDI

DESY. 3rd ECFA Workshop | Victor Schwan

9th October 2024

Starting Point

- ILD (for ILC) ♦ ILC MDI
 - * Hybrid tracking layout

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

_

Ansatz

- ILD (for ILC) * ILC MDI
 - * Hybrid tracking layout

CLD (CLIC-like Detector) * FCCee MDI * All-silicon tracking

TPC

Ansatz: 1) Remove everything inside of the TPC from ILD2) Replace with CLD subdetectors

DESY. 3rd ECFA Workshop | Victor Schwan

Ansatz

-

Ansatz: 1) Remove everything inside of the TPC from ILD2) Replace with CLD subdetectors

DESY. 3rd ECFA Workshop | Victor Schwan

New Models or 2 Merging Strategies

ILD for FCCee **v01** – large TPC:

- * Leave TPC as large as possible
- Squeeze Inner Tracker in between TPC and Vertex Detector

ILD for FCCee **v02** – small TPC:

- * Copy Inner Tracker from CLD
- * Shrink TPC to accommodate the IT

8

*Common MDI_o1_v00 *Calorimeter and solenoid volumes were left unchanged, except for removed ECal Ring and LHCal DESY. 3rd ECFA Workshop | Victor Schwan 9th October 2024

-

Tracking for Hybrid Layouts

DESY. 3rd ECFA Workshop | Victor Schwan

Tracking w/ Hybrid Subdetector Technologies

Developed for CLIC (full-silicon tracking)

*ILD_FCCee_v01

DESY. 3rd ECFA Workshop | Victor Schwan

Tracking w/ Hybrid Subdetector Technologies

DESY. 3rd ECFA Workshop | Victor Schwan

Beamstrahlung

DESY. 3rd ECFA Workshop | Victor Schwan

Magnetic Field Map of ILD_FCCee_01

- * Beamstrahlung simulation by Andrea Ciarma w/ guineaPig
- * Only Vertex Detector considered, TPC results in detector parallel session by Daniel Jeans

DESY. 3rd ECFA Workshop | Victor Schwan

Vertex Endcap @ FCC91

- * Mostly prompt hits, some back-scattering
- * Decreasing with radius

Vertex Endcap @ FCC240

- * Mostly prompt hits
- * Increased intensity
- * Slightly more boosted

DESY. 3rd ECFA Workshop | Victor Schwan

Vertex Barrel Occupancy @ FCC91 vs FCC240

- * Intensity increases with beam energy
- * Beamstrahlung more boosted \rightarrow hits shifted away from center

Outlook (this slide will not make it into the final presi)

- * Overlay gun muons with background data
- Study effect on tracking efficiency

Back-Up

DESY. 3rd ECFA Workshop | Victor Schwan

Template BS Comparison

DESY. 3rd ECFA Workshop | Victor Schwan

Vertex Barrel @ FCC91

- * Mostly prompt hits, some back-scattering
- * Intensity decreases with radius

Vertex Barrel @ FCC240

- * Intensity increased
- * Mostly prompt hits

DESY. 3rd ECFA Workshop | Victor Schwan

Overview of FCCee Models

FCC1 FCC2 -----v11 CLD

DESY. 3rd ECFA Workshop | Victor Schwan

Overview of ILD Models

FCC1

Tracking Subdetector Systems ILD vs CLD ILD

* Hybrid tracking layout

ILD barrel trackers:

- VerTeX detector (VTX)
- Silicon Internal Tracker (SIT)
 - Two layers
- Time Projection Chamber (TPC)
- Silicon External Tracker (SET)
 - One layer

ILD disc/endcap tracker:

- Forward Tracking Detector (FTD)
 - *2 + 5 discs
 - * Endcap for VTX and SIT
- **DESY.** 3rd ECFA Workshop | Victor Schwan

CLD

- All-silicon tracker
- * All subdetectors: barrel + discs/endcaps

* Vertex Detector:

* Three double layers + three double-discs on both sides

* Inner Tracker:

* Three barrel layers + seven discs

* Outer Tracker:

* Three barrel layers + four discs (enclosing the Inner Tracker discs)

ILD vs CLD

DESY. 3rd ECFA Workshop | Victor Schwan

DESY. 3rd ECFA Workshop | Victor Schwan

k4DetPerformance

- Framework designed to study tracking performance within full simulation environments
 - * Requires complete simulation and reconstruction setup
 - * Matches reconstructed tracks to simulated particles
 - * Various plotting options: superimpose plots and ratios for comparative analyses
- * Initially developed for CLD at FCCee by Gaelle Sadowski
- * Now integrated into Key4HEP
- Leonhard Reichenbach, Gaelle and me are looking into extending its applicability to other detectors

https://github.com/key4hep/k4DetPerformance