

Update news of CEPC Detector Ref-TDR

Huirong Qi LCTPC WP meeting, 17, Oct.

CEPC CDR and TDR

To demonstrate the readiness and feasibility of detector technologies

Aim for domestic endorsement

Ideal Timeline of CEPC

CEPC Operation Plan

Operation mode		ZH	Z	W+M-	tī
\sqrt{s} [GeV]		~240	~91	~160	~360
Run Time [years]		10	2	1	5
30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)

While aiming to meet the needs of the whole energy range, emphasize more on the Higgs operation mode.

ILD models for a circular collider

https://agenda.linearcollider.org/event/10442/contributions/55467/attachments/39965/63230/models.pdf

Daniel Jeans, KEK @ ILD meeting, October 2024

momentum resolution ?

tracking efficiency ? at low pT, with backgrounds ?

material budget

more material in CLD-tracker: effect on momentum resolution, b/c-tagging ?

future improvements for "circular" models

- WIP: get track reconstruction working now we get separate tracks from the inner silicon ("Conformal Tracking") and TPC ("Clupatra") need to be combined, + SET, ...
- review of tracker material budget ?
- implement other hardware changes (eg cooling infrastructure) needed to maintain ILD's degree of "realism"

- pixel TPC

Geometry and Mechanical Support

Subsystem	Supported By	
Barrel Yoke	Base	
Magnet	Barrel Yoke	
Barrel HCAL	Barrel Yoke	
Barrel ECAL	Barrel HCAL	
TPC+ Barrel OTK	Barrel ECAL	
ITK	TPC	
Beampipe+VTX+LumiCal	ІТК	
Endcap Yoke	Base	
Endcap HCAL	Barrel HCAL	
Endcap ECAL+OTK	Barrel HCAL	

Document Preparation of Ref-TDR

- The ref-TDR has 16 chapters, which may be re-structured later.
- Each chapter has a responsible team, including members from domestic and international institutes.

Reports will be reviewed on 21,Oct.

- 1) Physics Goal and Requirements
- 2) Concept Introduction
- 3) MDI and Luminosity Detectors
- 4) Vertex Detector
- 5) Silicon Trackers
- 6) Gaseous Trackers
- 7) Electromagnetic Calorimeter
- 8) Hadron Calorimeter
- 9) Muon Detector
- 10) Superconducting Solenoid Magnet
- 11) General Electronics
- 12) Trigger and Data Acquisition
- 13) Software and Computing
- 14) Mechanics and Integration
- 15) Physics Performance
- 16) Overall Cost and Project Timeline

Ref-TDR Timeline

Date	Actions and/or Expectations		
Jan 1, 2024	Start the ref-TDR process by comparing different technologies		
Jul 1, 2024	Baseline technologies are chosen; start to write TDR and address key issues		
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto		
Oct 21-23, 2024	Review of ref-TDR progress by the IDRC		
Oct 23-30, 2024	Discuss the ref-TDR at the CEPC workshop, report progresses to the CEPC IAC		
~ January 2025	The first draft of the ref-TDR is ready for internal reviews		
~ April 2025	Finish international reviews		
Jun 30, 2025	The ref-TDR is ready		

Thank you for your support to CEPC!

中國科學院為能物招酬完施 Institute of High Energy Physics Chinese Academy of Sciences