

The Low Power Option – Some Consequences for ILC Physics

Chris Damerell, Sonja Hillert and Tim Woolliscroft RAL, Oxford U and Liverpool U

Example Parameter Sets

		nom	low N	lrg Y	low P	High L
N	×10 ¹⁰	2	1	2	2	2
n_b		2820	5640	2820	1330	2820
$\varepsilon_{x,y}$	μm, nm	9.6, 40	10, 30	12, 80	10, 35	10,30
$\beta_{x,y}$	cm, mm	2, 0.4	1.2, 0.2	1, 0.4	1, 0.2	1, 0.2
$\sigma_{x,y}$	nm	543, 5.7	495, 3.5	495, 8	452, 3.8	452, 3.5
D_{y}		18.5	10	28.6	27	22
$\delta_{\!\scriptscriptstyle BS}$	%	2.2	1.8	2.4	5.7	7
$\sigma_{\!z}$	μm	300	150	500	200	150
P_{beam}	MW	11	11	11	5.3	11
Lumi	10 ³⁴	2	2	2	2	

Tor Raubenheimer ALCPG meeting, 5th Oct 2006

- 'Low P' is an association of two independent changes from the nominal design:
 - 2820 → 1330 bunches/train
 - Reduced β^{*} (factor 2 in both x and y) and reduced bunch length
- The first change halves the number of klystrons and provides a cost saving of 2-3%
- The second restores the luminosity to 2x10³⁴ cm⁻² s⁻¹ at the cost of:
 - increased energy spread (ave E-loss 2.2% → 5.7%)
 - increased beamstrahlung/pair production, pushing the beampipe to larger radius
- This procedure to increase L could be applied to the nominal parameters (it is approximately the High L option), so it should be considered on its merits

 Pair production for these and other options was presented at Snowmass 2005 by Cécile Rimbault, and published in Phys.Rev.ST Accel.Beams 9:034402,2006

- Nominal and low P, 4 T, |z| = 8 cm
- CAIN simulation, 1 bunch, 64k electrons (nominal), 159k electrons (low P)
- Very preliminary results from Tim Woolliscroft (Liverpool U)
- Interesting to see the deviations from azimuthal symmetry in the pair envelope at the end of the cylindrical pipe

Histogram 2 Nominal Low P 2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 -1.2 1.4 0.8 0.6 0.2 0.4 1.6 Radius

- Nominal and low P, 4 T, |z| = 8 cm, radial distribution (cm)
- If R_{bp} (min) is 15 mm for nominal FF (stable since Obernai, 1999, Nick Walker), this suggests we need $R_{bp} \sim$ 18 mm for low P

2-jet luminosity factors

Plot shows the 'irreducible limit' from low momentum tracks ambiguous between IP and decay chain

 R_{min} for layer 1 depends on which technology will work ($\sim R_{bp}$ for chronopixels, larger for other options)

Radius limit for time integrating detectors comes from hit density on layer 1:

[tracks fitted to layer 2 having unacceptable level of ambiguous hits within the extrapolated ellipse on layer 1]

These limits will be evaluated by the ILC vertexing community with full M/C simulation and reconstruction, for different assumed technologies

Largest uncertainty by far: which technology can be made to work without creating a small furnace at the heart of the ILC detector?

This may not be known for 2-3 years. For $\sim 50 \,\mu s$ sensitive time, Nom \rightarrow Low P inflates Layer 1 Rmin 16 \rightarrow 24 mm

Consequences of a swelling beampipe!

CDF's beautiful result – Sept 2006

Some will see increasing R_{bp} as 'progress'. However, this cost SLD the measurement of B^0_s mixing, who knows what further physics, and delayed the mixing measurement by 8 years. Similar story from LEP ...

Interim Conclusions

- Advantage of factor 2 luminosity gain for low β^* option is roughly cancelled for processes where vertex charge for moderate energy jets is required, for detectors with timing resolution ~50 μ s
- Increased energy spread will further weaken this option for some physics processes
- However, for physics that requires neither of these, this luminosity gain will be useful
- How to decide? Maintain flexibility; maybe LHC results will provide guidance ...
- Our opinion: processes such as e+e- → t tbar nu nubar will be important at ILC
- Independent of β^* , let's hope that the penalty in ILC luminosity by factor 2, for 2-3% cost saving, can be avoided by the international community