Combined LHC/ILC analysis -- case of heavy sfermions

Krzysztof Rolbiecki and Gudrid Moortgat-Pick

in coll. with: K. Desch, J. Kalinowski, W.J. Stirling (hep-ph/0607104)

<u>Outline</u>

- Introduction: 'warm-up'
- Case study: chosen scenario with heavy sfermions
- Numerical results: expectations for LHC
- Numerical results: ILC strategy and LHC/ILC interplay
- Conclusions

Supersymmetry

- One of the most promising candidates for physics beyond the Standard Model (SM) is Supersymmetry (SUSY)
 - high predictive power, solves hierarchy, unification, dark matter problem etc.
 - every SM particle gets a SUSY partner with the same quantum numbers
 - all these assumptions have to be checked experimentally model-independently!
- In which range do we expect SUSY?
 - at least some light particles should be accessible at 500 GeV
 - best possible tools needed to get maximal information out of only the part of the spectrum

Warm-up: SUSY challenge

- Problem: number of new parameters
 - even in the MSSM 105!
- We have only
 - constraints on parameters from e,n, Hg, etc. dipole moments
 - exclusion bounds from LEP and Tevatron
 - \rightarrow constraints from low-energy experiments b \rightarrow s γ , g $_{\mu}$ -2
 - constraints from dark matter searches
- To reveal the structure of the underlying physics, it is important to determine the parameters in a model-independent way and test all model assumptions experimentally
- Soon we will have LHC data, but LHC/ILC interplay will be essential and both machines cover a large range of the parameter space!

Tricky case with heavy sfermions

- Feature of, for instance, Split-SUSY or focuspoint inspired scenarios
 - features: very heavy squarks, sleptons, heavy H, A but light SM-like h and light gluino and light charginos / neutralinos
 - challenging for the LHC..... but is the ILC in that case the right machine?
 - some analysis done at LHC, but within mSUGRA and still very difficult
- Our approach: take a focuspoint-inspired scenario, but do not impose any assumption on the SUSY breaking mechanism and apply LHC / ILC analysis
 - implies a rather large model-independence
- How well is it possible to
 - determine the underlying fundamental parameters?
 - check some SUSY implications?
 - predict masses of heavier states? (-> input for the second stage of the ILC?)

Chosen scenario

MSSM parameters:

$$M_1 = 60 \text{ GeV}$$
, $M_2 = 121 \text{GeV}$, $M_3 = 322 \text{ GeV}$, $\mu = 540 \text{ GeV}$, $\tan \beta = 20 \text{ GeV}$

Resulting masses:

$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$	$m_{\tilde{\chi}^0_1}$	$m_{ ilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{ ilde{\chi}^0_4}$	$m_{ ilde{g}}$
117	552	59	117	545	550	416

m_h	$m_{H,A}$	m_{H^\pm}	
119	1934	1935	

light gauginos/higgsinos, light gluino, light h but heavy H's, A

$m_{\tilde{ u}}$	$m_{ ilde{e}_{ m R}}$	$m_{ ilde{e}_{ m L}}$	$m_{ ilde{ au}_1}$	$m_{ ilde{ au}_2}$	$m_{ ilde{q}_{ m R}}$	$m_{ ilde{q}_{ m L}}$	$m_{ ilde{t}_1}$	$m_{ ilde{t}_2}$
1994	1996	1998	1930	1963	2002	2008	1093	1584

heavy squarks and sleptons in the multi-TeV range

What is expected that LHC could do?

- In principle: all squarks should be kinematically accessible
 - \rightarrow stops: $BR(\tilde{t}_{1,2} \rightarrow \tilde{g}t) \sim 66\%$

background from t large, no new interesting channels open in decays

- other quarks: decay mainly via gluino and q, but reconstruction of heavy squarks at 2 TeV difficult
- assume: mass resolution of squarks with uncertainty of about 50 GeV (but that's not crucial for our further procedure)
- Production of light gluino: perfect for LHC (high rates, several decays)

Mode	$\tilde{g} \to \tilde{\chi}_2^0 b \bar{b}$	$\tilde{g} \to \tilde{\chi}_1^- q_u \bar{q}_d$	$\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \bar{q}_d q_u$	$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-$	$\tilde{t}_{1,2} \rightarrow \tilde{g}t$	$\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell^- \bar{\nu}_\ell$
BR	14.4%	10.8%	33.5%	3.0%	66%	11.0%

clear dilepton edge from neutralino decay:

$$\delta(m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}) \sim 0.5 \text{ GeV}$$

- decay via chargino less promising (escaping ν , 3-body decay)

What is expected at the ILC (500) ?

- Kinematically only two light neutralinos and light chargino accessible
 - in reality: light neutralino production below 1 fb

$\sigma(\tilde{\chi}_i \tilde{\chi}_j)/\text{fb}$	$\sqrt{s} = 350 \text{ GeV}$		$\sqrt{s} = 5$	$00 \; \mathrm{GeV}$	$\sqrt{s} = 800 \text{ GeV}$		$\sqrt{s} = 1300 \text{ GeV}$	
	(-, +)	(+,-)	(-,+)	(+,-)	(-, +)	(+, -)	(-, +)	(+,-)
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	0.58	0.08	0.93	0.07	1.76	0.07	3.14	0.08
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	_	_	_	_	0.24	0.27	0.13	0.28
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{3}^{0}$ $\tilde{\chi}_{1}^{0}\tilde{\chi}_{4}^{0}$	_	_			0.05	0.11	0.02	0.20
$+\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$	0.06	0.05	0.49	0.05	2.06	0.05	4.91	0.07
$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	_	_		_	1.44	0.79	1.18	0.53
$\begin{array}{c} \tilde{\chi}_{2}^{2}\tilde{\chi}_{3}^{2} \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{4}^{0} \\ \tilde{\chi}_{3}^{0}\tilde{\chi}_{3}^{0} \end{array}$	_	_	_	_	0.23	0.09	0.55	0.13
$\tilde{\chi}_3^0 \tilde{\chi}_3^0$	_	_	_	_	_	_	< 0.001	< 0.001
$\tilde{\chi}_3^0 \tilde{\chi}_4^0$	_		_	_	_		38.53	24.97
$\tilde{\chi}_4^0 \tilde{\chi}_4^0$	_	_	_	_	_	_	0.002	0.001
$\tilde{\chi}_1^+ \tilde{\chi}_2^-$			_	_	1.36	0.88	1.05	0.68
$\tilde{\chi}_2^+ \tilde{\chi}_2^-$	_	_	_	_	_	_	143.23	25.95

- → light pure $\tilde{\chi}_1^0 \sim \tilde{B}$, $\tilde{\chi}_2^0 \sim \tilde{W}$: production suppressed by heavy \tilde{e}_L , \tilde{e}_R exchange
- heavier $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ - \tilde{H} with specific CP-phases: rather high rates!
- heavy pair $\tilde{\chi}_2^+ \tilde{\chi}_2^- \sim H$: also high rates!

Promising channel: light chargino

- So forget light neutralino production at ILC(500) for today ...
- Use only (light) chargino production, provides high rates
- Due to very limited information, use two energies and polarized beams!

\sqrt{s}/GeV	(P_{e^-}, P_{e^+})	$\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)/\mathrm{fb}$	$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) B_{slc} e_{slc}/\text{fb}$
350	(-90%, +60%)	6195.5	1062.5 ± 4.0
	(+90%, -60%)	85.0	14.6±0.7
500	(-90%, +60%)	3041.5	521.6±2.3
	(+90%, -60%)	40.3	6.9±0.4

- uncertainties: efficiency 50%, 1 σ stat. uncertainties, $\Delta P / P = 0.5\%$
- to separate background WW: use semileptonic chargino decay channel, since mass constraints applicable

Mass measurements at LHC+ILC

- Expected chargino mass resolution:
 - in the continuum: up to 0.5 GeV
 - threshold scan:

$$m_{\tilde{\chi}_1^{\pm}} = 117.1 \pm 0.1 \text{ GeV}$$

- Neutralino mass resolution:

$$m_{\tilde{\chi}_1^0} = 59.2 \pm 0.2 \text{ GeV}$$

- together with LHC mass information ($\delta(m_{\tilde{\chi}^0_2}-m_{\tilde{\chi}^0_1})\sim 0.5~{
m GeV}$) :

$$m_{\tilde{\chi}^0_2} = 117.1 \pm 0.5 \text{ GeV}$$

Strategy to determine fundamental parameters

On which parameters depend the process?

- Parameters in the gaugino/higgsino: M_1 , M_2 , μ , tan β
- But heavy virtual particles: m_{ν}^{\sim} , m_{l}^{\sim} , m_{qL}^{\sim} , m_{qR}^{\sim}

Strategy, 1st step

- Use measured masses and polarized cross sections
- Convert them analytically and derive / fit the parameters within uncertainties
 - do χ^2 test for M₁, M₂, μ and m_{γ}
 - BR not sensitive to heavy slepton masses
 - → was necessary to fix tanß (took several values) to get convergence of fit!

 (because of strong correlations among parameters ...)

Results:

 \rightarrow contradiction to theory for tan β < 1.7

59.4
$$\leq M_1 \leq$$
 62.2 GeV, 118.7 $\leq M_2 \leq$ 127.5 GeV,
450 $\leq \mu \leq$ 750 GeV, 1800 $\leq m_{\tilde{\nu}_e} \leq$ 2210 GeV

- M₁, M₂ good (~5%), but μ and m $^{\sim}_{\nu}$ rather weak (~16%) due to limited information

Strategy, 1st step

- Masses and cross sections are not enough to constrain five parameter space due to strong correlations
- Allowed ranges migrate with change of tan β

Need another observable to get better constraints

Strategy, 2nd step -- intro spin correlations

- Which further observable could be used?
 - Forward-backward asymmetry of the final lepton / quark

(angle between incoming beam and final lepton or quark)

Strongly dependent on spin correlations of decaying chargino:

$$\rightarrow$$
 amplitude squared: $e^- + e^+ \rightarrow \tilde{\chi}_1^+ + \tilde{\chi}_1^-$ and $\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 + \ell^- + \bar{\nu}$

$$|T|^2 = |\Delta_{f_1}|^2 |\Delta_{f_2}|^2 \sum_{fin.sp.} \underbrace{(P^{\lambda_{f_1}\lambda_{f_2}}P^{*\lambda'_{f_1}\lambda'_{f_2}})}_{\text{spin-density matrix}} \times \underbrace{(Z_{\lambda_{f_1}}Z^*_{\lambda'_{f_1}})}_{\text{decay matrix}} \times \underbrace{(Z_{\lambda_{f_2}}Z^*_{\lambda'_{f_2}})}_{\text{decay matrix}}$$

$$|T|^2 \sim PD_iD_j + \Sigma_a^P \Sigma_a^D D_j + \Sigma_b^P \Sigma_b^D D_i + \Sigma_{ab}^P \Sigma_a^D \Sigma_b^D$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\text{cross section} \quad \mathsf{A}_{\mathsf{fb}}(\mathsf{I}^{\mathsf{-}}) \qquad \mathsf{A}_{\mathsf{fb}} \left(\mathsf{I}^{\mathsf{+}}\right) \quad \mathsf{not} \; \mathsf{needed} \; \mathsf{here}$$

'new contributions'

How important are spin correlations?

Impact of the 'new contributions' on A_{fb}:

- strong influence of spin correlations: A_{fb} within [5%, 20%]
- and also sensitivity to heavy sneutrino mass!

Strategy, 2nd step -- leptonic A_{fb}

- use measured masses, cross sections and leptonic A_{fb}
- since decay also depends on unknown left slepton mass, use SU(2) relation:

$$m_{\tilde{e}_{\rm L}}^2 = m_{\tilde{\nu}_e}^2 + m_Z^2 \cos(2\beta)(-1 + \sin^2\theta_W)$$

include also statistical and polarization uncertainty for A_{fb}:

\sqrt{s}/GeV	(P_{e^-},P_{e^+})	$A_{\mathrm{FB}}(\ell^-)/\%$	$A_{\mathrm{FB}}(\bar{c})/\%$
350	(-90%, +60%)	4.42±0.29	4.18 ± 0.74
	(+90%, -60%)	_	_
500	(-90%, +60%)	4.62±0.41	4.48 ± 1.05
	(+90%, -60%)	_	_

use only (- +) values due to statistical uncertainty

Strategy, 2nd step -- results

Results:

$$\Rightarrow \text{ do } \chi^2 \text{ test:} \qquad \chi^2_{A_{\rm FB}} = \chi^2 + \sum_i \Big(\frac{A_{\rm FB}(i) - A_{\rm FB}(i)^{\rm th}}{\Delta A_{\rm FB}(i)}\Big)^2$$

 \rightarrow not necessary to fix tan β any more !!!

59.7
$$\leq M_1 \leq 60.35 \text{ GeV}, \quad 119.9 \leq M_2 \leq 122.0 \text{ GeV},$$

 $500 \leq \mu \leq 610 \text{ GeV}, \quad 14 \leq \tan \beta \leq 31$
 $1900 \leq m_{\tilde{\nu}_e} \leq 2100 \text{ GeV}$

Improvements:

- constraints for multi-TeV sneutrino mass by factor 2, up to 5% accuracy!
- accuracy of M₁, M₂ by factor 5
- \rightarrow accuracy of μ by factor 1.6 and tan β now included!

Strategy, 2nd step -- mass predictions

- Due to rather precise parameter determination:

-0

$$\begin{array}{l} 506 < m_{\tilde{\chi}^0_3} < 615\,Ge\,V \\ 512 < m_{\tilde{\chi}^0_4} < 619\,Ge\,V \\ 514 < m_{\tilde{\chi}^\pm_2} < 621\,Ge\,V \end{array}$$

- → Obviously 1 TeV as 2nd ILC energy stage would not be sufficient ... but 1.1-1.3~TeV !!!
- Rather precise parameter determination important and possible at 500 GeV (even in such tricky scenarios with limited information only)
 - enables to provide important input for future upgrade strategies ...

Strategy, 3rd step -- also hadronic Afb

- Redo analysis without assuming SU(2) relation between slepton masses
 - squark masses constrained from LHC
 - strategy as before: use masses, cross sections, leptonic A_{fb}
- Include also A_{fb} from hadronic distribution:
 - charm identification needed : assume c-tag efficiency of 40% for selection efficiency of 50%
- Results (without using SU(2) relation) :

```
\begin{split} 59.45 &\leq M_1 \leq 60.80 \text{ GeV}, \quad 118.6 \leq M_2 \leq 124.2 \text{ GeV}, \quad 420 \leq \mu \leq 770 \text{ GeV} \\ 1900 &\leq m_{\tilde{\nu}_e} \leq 2120 \text{ GeV}, \quad m_{\tilde{e}_{\rm L}} \geq 1500 \text{ GeV}, \quad 11 \leq \tan\beta \leq 60. \end{split}
```

- again precise parameter determination and constraints for sneutrino mass
- no upper bound for selectron mass, but consistent with SU(2) relation!

Conclusions

- Tricky case of SUSY: multi-TeV sleptons and squarks
 - only few particles kinematically accessible at the ILC with 500 GeV
- Study done even without assuming a specific SUSY breaking scheme!
- Forward-backward asymmetries of the final leptons/quarks: sensitivity to heavy virtual particles
 - get tight constraints even for masses in the multi-TeV range!
- Also rather accurate parameter determination possible with A_{fb}
 - allows to predict masses of heavier charginos/neutralinos
 - **→** important input to outline needed energy scale for the 2nd stage of the ILC!
- LHC / ILC(500): neither of these colliders alone can provide sufficient information to solve such a challenging scenario with multi-TeV squarks and sleptons --> LHC / ILC(500) interplay crucial!