

」ILCの物理(深掘り)

末原 大幹 (東大ICEPP) for ILC-Japan 物理/測定器ワーキンググループ

Contents

- ヒッグスの物理
 - なぜヒッグスを調べたいのか
 - Naturalness問題、拡張ヒッグスセクター、ヒッグスポータル、真空の問題
 - (HL-)LHCとHiggs factoryの違い
- 解析の一例: ヒッグス自己結合@550-550 GeV CM energy
 - 信号と背景事象、解析の戦略
 - 最近の進展から: フレーバー識別 with 深層学習 (Transformer)
 FCCeeでも自己結合測定? (間接)

GeV world SMが有効理論

湯川力 Fermionの質量生成

TeV world SM相互作用は E⁻²で減少 新物理が本質

ヒッグス粒子と「自然さ」

ヒッグス粒子の自己エネルギー キャンセルするダイアグラムが ないと無限に大きくなってしまう

> たとえばGUTスケールに「裸」のHiggs massが あり、それがループの寄与(電弱スケール からGUTスケールまで積分)とちょうど 打ち消して電弱スケールにHiggs massが出た とすると、「不自然」な問題がある

ー般にTeVスケールに新粒子がいてこの効果を 消すことがnaturalnessに対する解答になる

Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 4

例えば同じ強さで符号が逆の ループがあればキャンセルして 自己エネルギーへの寄与を消せる → SUSYの場合

拡張ヒッグスセクター / 複合ヒッグス

Two Higgs doublet model (2HDM)

- SM Higgs/EW sector: W[±], Z⁰, h (ヒッグス機構)
- 2nd Higgs sector: H[±], A (CP-odd Higgs), H (Heavy CP-even Higgs)

ヒッグスとフェルミオンの結合の種類により Type-1, 2, X, Yの2HDMがある SUSYは Type-2 2HDMの一種 (なので(超対称性でない)Heavy Higgsを複数持つ)

さらに複雑な3HDM等もある。検出の方法は

- Heavy Higgsを直接探す(直接探索)
- ・ SM Higgs (h)とSM粒子の結合のずれを見る (間接探索)

複合ヒッグス

- ヒッグスは複合粒子で QCD pionのような有効場状態
- TeV領域に(pionに対するkaon のような)高い共鳴状態が現れる
- 余剰次元模型と現象論的に等価

Technicolor, Little Higgsなどの模型 がある。Little Higgsはtop partnerが 重要な新粒子となる

拡張ヒッグスと同様に、 直接探索とHiggs結合による間接 探索がある。(WW scatteringもある)

ハドロンコライダーとレプトンコライダー(2)

Pileupも多くて大変

高エネルギーの事象は少ない。Lepton colliderはfull energyを使える

Linear colliderでは電子・陽電子偏極も使える(さらにパラメータが多い)

Hadron colliderではエネルギーの大部分はspectatorとなり、

Lepton colliderは4元運動量保存、hadron colliderはpT保存のみ

線形

Hadron collider (LHC)

 \bullet

•

•

陽子·陽子衝突 14000 GeV

(単純にcutに使える変数が一つ多い)

Higgs factory (ILC, FCCee, …)

電子·陽電子衝突 240- GeV

Higgsの生成過程と全断面積・質量測定

Zの四元運動量と初期条件から Hの四元運動量→Hの質量が求まる イベント数からHの崩壊モード非依存に 全断面積(∝HZZ結合定数)が求まる

Higgs結合の精密測定 susy

Higgs崩壊モードの分類 クォークのフレーバ識別が重要

(後述)

ずれのパターンから様々な新物理の分離が可能 Higgsの量子補正 $\Delta m_H \ge$ Higgs結合定数について $m_H^2/\Delta m_H^2 \sim \delta g_h/g_h$ という関係が期待される。

△m_Hが新物理スケールだと思えば、 O(1%)の結合定数測定は1 TeVの新物理の 間接探索になる。

Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 10

複合ヒッグス

Higgsと軽い新物理

- LHCでTeV新物理が見えない ためm_H以下の新物理 (GeV, MeV DM)への関心増
- Higgs exotic/invisible崩壊
 "Higgsポータル"
 - Higgsのみと結合する新物理
 - Higgs → XX (→ xxxx) (SM粒子 or DM)
 - 0.01 0.1% BRに感度
 - Invisible崩壊はjetエネルギー
 分解能が重要 (深層学習の応用)

Ζ

ヒッグス自己結合:真空と時空の問題

ヒッグスに関する相互作用
ゲージ相互作用(ヒッグス機構)
湯川相互作用(フェルミオン結合)
自己相互作用
独立な項であり、独立な検証が必要
自己相互作用のみ未検証
(HL-LHCでも完全な検証は難しい)

ヒッグスの自己相互作用は真空の Higgs potentialと直接関係している

 e^{\dagger}

Higgsを複数終状態に 持つプロセス 断面積が小さい

自己結合が大きいことは 電弱バリオジェネシスが 起きる条件の一つ

宇宙の物質生成にも 関係する

解析の手法 (初心者向け) 信号: C

再構成の中身(主なもの)

- 飛跡再構成(tracking)
- Particle Flow / 粒子識別
 - ジェットクラスタリング

解析の流れ

- 信号と背景事象の特徴量を取り出す 解析フレームワーク(ilcsoft)を使い、 ほしい変数をROOT tree等に出す
- Cut plotを作り条件を考える (もしくは多変量解析に入力する変数を考える)
- Signal significanceを出したり、物理量をfitで出したりする

信号: O(100) 背景: O(100万) $(tt \rightarrow bbWW)$ 他, ZZH, ZH, ZZなど 自己結合の解析の場合 • Z→II, nn, ggで場合分け Z→qqの場合、HH→4b をまず考える (2b2Wはttと分けられない) フレーバー識別を使って 4bと2bを分ける tt, ZZH → 4q2bを分ける (ttをここで3桁落とす) Kinematic cutで4b背景 事象を主に落とす (1桁以上の改善が必要)

Previous results

results (example individual channels)

ZHH channel	$s (HH \rightarrow bbbb)$	b	σ_{e}	
eeHH	$3.9 \pm 0.03 \ (2.6)$	7 ± 0.6	1.29σ	
$\mu\mu HH$	$5.1 \pm 0.03 \ (2.8)$	9 ± 0.5	1.48σ	
u u HH	$5.6 \pm 0.04 \ (5.5)$	7 ± 1.0	1.78σ	
bbHH	8.5 ± 0.10 (8.0)	22 ± 1.3	1.75σ	
qqHH	$12.6 \pm 0.1 \ (10.9)$	55 ± 2.0	1.65σ	

Table 2: Results of the event selection of ZHH with $HH \rightarrow bbbb$ corresponding to an integrated luminosity of $\mathcal{L} = 2$ ab⁻¹ and a beam polarisation of $P(e^+e^-) = (0.3, -0.8)$.

major bkg.: tt, ZZ, ZH, ZZZ, ZZH

results (combined)

\sqrt{S}	$\int L \mathrm{d}t$	$\Delta\sigma/\sigma$	$\Delta \lambda_{HHH} / \lambda_{HHH}$
ZHH @ 500 GeV	4 ab ^{-1 (*)}	17%	27%
νν ΗΗ @ 1 TeV	4 ab ^{-1 (**)}	15%	10%

P(e+, e-) = *: equally shared by (-0.8,+0.3) and (+0.8,-0.3); **: (-0.8,+0.2)

古い解析(2013?)

- ・ 古いFlavor識別(LCFIPlus)
- BDT-based analysis
- 干渉diagramの影響は
 Higgs mass分布を使って
 低減している
 (青→赤の変換で考慮)
- qqHH, nnHHのeffが低い (qqHHはflavor tagで 改善する?)
- Jet clusteringの間違えが 性能を悪くしている (こちらもDNNで改善?)

干渉がなければ λ の精度は σ の精度の半分 ($\delta\lambda/\lambda = 1/2.0 \times \delta\sigma/\sigma$)

- ILC: x0.85 (ZHH@500 GeV), x1.8 (vvHH@1 TeV) @λ=1
- HL–LHC: x0.8 (for gg– \rightarrow HH) $@\lambda=1$

 λ が大きいとZHHは精度が向上(σ が増えるため), vvHHは低下, ただし λ >1.7では復活 HL-LHCでは1< λ <3はかなり困難, 逆に λ <1では有利

Expectation of improvements: flavor tag

- Transformer: 自然言語処理で開発された深層ネットワーク (e.g. ChatGPT)
 - 多分野の課題に高いパフォーマンスを出している game changer
 2つのオブジェクト間の関係を学習する
- Particle Transformer: 粒子間の相関 を取り入れたtransformer
 - ParticleNetを上回る性能を発揮 (@LHC-like simulation)
 - CMS flavor taggingの次期バージョンで 採用予定
 - ILC applicationを国内で推進中

	b-tag 80% eff.		c-tag 50% eff.	
background	c jets	uds jets	b jets	uds jets
+LCFIPlus (BDT)	6.3%	0.79%	7.4%	1.2%
*ParT (initial)	1.3%	0.25%	1.0%	0.43%
**ParT (improved)	0.48%	0.14%	0.86%	0.34%

Signal: qqHH: qq \rightarrow 0b, HH \rightarrow 4b Bkg: qqqqH: qqqq \rightarrow 0b, H \rightarrow 2b

性能向上の予測

LCFIPlus → ParTにより、qqHHモードで>30%の efficiency改善を予測(15% → >20%?)

- ただし4b backgroundのcutを強化する必要あり
- 他の終状態にも効くと考えられる
- Full analysis to be done (in a few months?) 事象分類にもParTを使うことが可能
- Mis-jet clusteringの影響を低減したい
- 2月にDESYからのvisitorとやってみる予定

Table 2: Results of the event selection of ZHH with $HH \rightarrow bbbb$ corresponding to an integrated luminosity of $\mathcal{L} = 2 \text{ ab}^{-1}$ and a beam polarisation of $P(e^+e^-) = (0.3, -0.8)$.

Expected improvements (to be included in ECFA study) 27% → 18% (他の改善も含む) (preliminary)

-Japan 大学訪問シリーズ, 28 Jan. 2025, page 18

CM energyの効果 (500 → 550 GeV)

 • 550 GeVではvvHHのcross sectionが大幅に上昇 (ZHHは大きく変わらない) expected: 18% → 13% (preliminary)

ZHH

vvHH

おまけ: λ by single Higgs

A new question: λ_{hhh} from Single-Higgs?

√s ≥ 240-250 GeV

$e^{+} Z e^{+} Z$ $e^{-} h e^{-} h$ $\delta_{\sigma}^{240} = 100 \left(2\delta_{Z} + 0.014\delta_{h}\right)\%$ McCullough

if only λ_{HHH} allowed to vary —> $\delta\lambda_{hhh}$ ~ 20% @ CEPC

would that be a **discovery**?

[ongoing work by: Yong Du, Jiayin Gu, JT]

- based on a fitting program for last ESU: 23 (Higgs + WW + EWPO) + 5 (eett) operators
- take directly covariance matrix as eett bounds (preliminary, from Victor Miralles)
- reproduced (almost) the NLO calculation about eett in ZH

extra uncertainty induced by eett on σ_{ZH} $\delta\sigma_{ZH} \sim 0.3\% (1.5\%)$ for 240 (365) GeV a test fit for 5000 fb⁻¹ (240) + 1500 fb⁻¹ (365) $\delta\lambda_{hbh}$ mildly increased from 57% to 77%

[warning: this is very preliminary, many things to be done, e.g. include NLO eett in other observables as well.]

最近FCC/CEPC界隈で注目されている 様々な測定結果を併せてglobal fitによりsingle Higgsのみでλを求める(有効場理論(EFT)) 他に影響するdiagramの不定性を考慮するとなかなか厳しいという印象。

おまけのおまけ: 有効場理論

- 標準模型のLagrangian + 保存則 を破らずに入れられる低次元の 補正項を新物理の影響として入れる 係数をfreeにする
- 2. 様々な実験結果を集める
- 3. Global fitにより補正項を求める
- 4. 非SMの係数が0から有意にずれるか
 → 新物理の測定精度
- 様々な実験結果をsystematicに入れる
- 補正係数間の関係性を入れられる
- Kappa frameworkよりモデル依存性 が弱い

SMEFT: Higgs couplings are related to themselves

$$\begin{split} \Delta \mathcal{L}_{h} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - (1+\eta_{h}) \overline{\lambda} v h^{3} + \frac{\theta_{h}}{v} h \partial_{\mu} h \partial^{\mu} h \\ &+ (1+\eta_{W}) \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu} h + (1+\eta_{WW}) \frac{m_{W}^{2}}{v^{2}} W_{\mu}^{+} W^{-\mu} h^{2} \\ &+ (1+\eta_{Z}) \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu} h + \frac{1}{2} (1+\eta_{ZZ}) \frac{m_{Z}^{2}}{v^{2}} Z_{\mu} Z^{\mu} h^{2} \\ &+ \zeta_{W} \hat{W}_{\mu\nu}^{+} \hat{W}^{-\mu\nu} \left(\frac{h}{v} + \frac{1}{2} \frac{h^{2}}{v^{2}}\right) + \frac{1}{2} \zeta_{Z} \hat{Z}_{\mu\nu} \hat{Z}^{\mu\nu} \left(\frac{h}{v} + \frac{1}{2} \frac{h^{2}}{v^{2}}\right) \\ &+ \frac{1}{2} \zeta_{A} \hat{A}_{\mu\nu} \hat{A}^{\mu\nu} \left(\frac{h}{v} + \frac{1}{2} \frac{h^{2}}{v^{2}}\right) + \zeta_{AZ} \hat{A}_{\mu\nu} \hat{Z}^{\mu\nu} \left(\frac{h}{v} + \frac{1}{2} \frac{h^{2}}{v^{2}}\right) \,. \end{split}$$

 $\begin{array}{ll} (\text{SM structure: kappa like}) & (\text{Anomalous: new Lorentz structure}) \\ \eta_{h} = \delta \overline{\lambda} + \delta v - \frac{3}{2} c_{H} + c_{6} & \theta_{h} = c_{H} \\ \eta_{W} = 2\delta m_{W} - \delta v - \frac{1}{2} c_{H} & \zeta_{W} = \delta Z_{W} = (8c_{WW}) \\ \eta_{WW} = 2\delta m_{W} - 2\delta v - c_{H} & \zeta_{Z} = \delta Z_{Z} = c_{w}^{2}(8c_{WW}) + 2s_{w}^{2}(8c_{WB}) + s_{w}^{4}/c_{w}^{2}(8c_{BB}) \\ \eta_{Z} = 2\delta m_{Z} - \delta v - \frac{1}{2}c_{H} - c_{T} & \zeta_{A} = \delta Z_{A} = s_{w}^{2} \left((8c_{WW}) - 2(8c_{WB}) + (8c_{BB}) \right) \\ \eta_{ZZ} = 2\delta m_{Z} - 2\delta v - c_{H} - 5c_{T} & \zeta_{AZ} = \delta Z_{AZ} = s_{w}c_{w} \left((8c_{WW}) - (1 - \frac{s_{w}^{2}}{c_{w}^{2}})(8c_{WB}) - \frac{s_{w}^{2}}{c_{w}^{2}}(8c_{BB}) \right) \end{array}$

hZZ/hWW/hγZ/hγγ highly related: SU(2)xU(1) gauge symmetries

EFTにはいろいろな条件のものがあるが、 一般的に使われるものの一つ (SMEFT,約30パラメータ)

Summary

- ILCの物理解析の例として、Higgs関連の物理を取り上げました
 - Motivation 1: 拡張ヒッグス/複合ヒッグスを通して新物理を探る
 - Higgs couplingの精密測定
 - Motivation 2: Higgsの崩壊を通して軽い新物理を探る
 - Motivation 3: Higgs自己結合の測定
 - Cross sectionが小さく非常に困難だが重要な解析チャンネル
 - ・500 (hopefully 550) GeVが必要 (ILC upgrade? LC@CERN?)
 - 深層学習で結果の大幅な改善が期待され、現在取り組んでいます
- BSM直接探索、EW/top精密測定もいろいろな話題がありますが、今回は省略しました
- 今年の夏にHiggs factory夏合宿を計画しています。興味ある方はぜひ検討してください
 Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 23

_ 超伝導電磁石 (3.5 Tesla) 強力な磁場で荷電粒子を曲げる

カロリメータ 中性粒子の位置、エネルギーを測定

ガス検出器**(TPC)** 荷電粒子の運動量を正確に測定

ビームパイプ

シリコン崩壊点検出器・飛跡検出器 荷電粒子の位置を精密に測定する

衝突点

雷子

VAREAL RC

内側に荷電粒子の検出器、 外側にカロリメータがある 得られた粒子の情報から 元の反応を再構成していく

Higgs結合の精密測定

Higgs崩壊モードの分類

全崩壊幅の 決定方法 Recoil mass Y_n = 測定值 F_n = 定数 (理論計算可) $Y_1 = \sigma_{ZH} = F_1 \cdot g_{HZZ}^2$ $\begin{array}{l} \mathsf{ZH} \rightarrow \mathsf{Zbb} \\ Y_2 = \sigma_{ZH} \times \operatorname{Br}(H \rightarrow b\bar{b}) = F_2 \cdot \frac{g_{HZZ}^2 g_{Hb\bar{b}}^2}{\Gamma_T} \end{array}$ vvH→vvbb $Y_3 = \sigma_{\nu\bar{\nu}H} \times \text{Br}(H \to b\bar{b}) = F_3 \cdot \frac{g_{HWW}^2 g_{Hb\bar{b}}^2}{\Gamma_T}$ $VVH \rightarrow VVWW^*$ $Y_4 = \sigma_{\nu\bar{\nu}H} \times \operatorname{Br}(H \to WW^*) = F_4 \cdot \frac{g_{HWW}^4}{\Gamma_{T}}$

Y1 からg_{HZZ}を導出
 Y1 x Y3 / Y2 と g_{HZZ}からg_{HWW}を導出
 Y4とg_{HWW}からΓ_T (ヒッグス全崩壊幅)を導出
 Y2/Y3とg_{HZZ}/g_{HWW}, Γ_Tからg_{Hbb}を導出
 Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 26

Higgs BR measurements

Any HFs: ~1% (or less depending decay channels) BR of dominant decays

• Factor 5-10 improvements from HL-LHC (except $\mu\mu$ and $\gamma\gamma$)

 \rightarrow fingerprinting BSM models

Much more model independent: total cross section, total width,

30-param SMEFT with various electroweak precision measurements

Higgs結合によるBSMの識別

EPPSU Physics bookの議論では、Higgsの量子補正 Δm_{H} とHiggs結合定数について $m_{H}^{2}/\Delta m_{H}^{2} \sim \delta g_{h}/g_{h}$ という関係が期待されるとしている。 Δm_{H} が新物理スケールだと思えば、 1%のcoupling測定が[~]1(.25) TeVの新物理に対応 つまりO(%)の結合定数測定は1 TeVの新物理の 間接探索になる。 HiggsのCP property測定 Higgsの崩壊角分布からCP mixtureを検証。様々なモードで 異なった感度がある HL-LHCとe⁺e⁻は相補的な感度

SMEFTによるCPV operatorの感度。 青がHL-LHC, オレンジがILC250

Higgs self coupling

 $V(\eta_H) = rac{1}{2}m_H^2\eta_H^2 + \lambda \eta_H^3 + rac{1}{4}\lambda\eta_H^4$

Direct probe of Higgs potentials-channelEssential for electroweak baryogenesis(1st order phase transition
requires >10% more I)

Extremely small cross section: O(100) events / ab⁻¹

Effect of insensitive diagram \rightarrow next page

channel	√s[GeV]	L [ab ⁻¹]	λ precision
s-channel	500	4	27%
t-channel	1000	4	10%

Ultimate precision at linear collider: ~5% at 2-3 TeV Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 29

Higgs self coupling (cont.)

Effect of interference

500 GeV: better at higher λ (20% @ λ ~ 1.5) 1 TeV: best at 0.8 < λ < 1.2, insensitive at λ ~ 1.5

Possibility for improvements

Reconstruction of multi-jet environments (Jet energy resolution, flavor tagging) → Deep learning based reconstruction Improvements possible but not easy Taikan Suehara, ILC-Japan 大学 Self coupling from NLO ZH cross section

 $\sigma_{i,\text{NLO}} = Z_{\text{H}}\sigma_{i,\text{LO}}\left(1 + \kappa_{\lambda}C_{1,i}\right)$

Considered in FCC context (since > 500 GeV impossible)

- Loop contribution
- Assuming no BSM loop (qualitatively different from double-Higgs search)
- → ~30% resolution feasible at 250 GeV (FCCee study) (to be investigated for LC)

新物理直接探索

- Compressed spectrum
 - 最も軽い新粒子と次に軽い新粒子の 質量が縮退するシナリオ
 - SUSYではHiggsino, Winoが縮退するため 他がdecoupleしていると自動的に縮退
 - LHCではdisappearing trackなどを使う ため寿命に下限(質量差に上限)がつく
 - e⁺e⁻ではsub-GeVのsoft trackをtagできるため 質量差のギャップを完全に埋められる
 - ほぼ√s/2 までカバーする

Mass splittingが1桁GeV (soft pion) はHadron colliderは苦手

- Naturalnessから要請される100 GeV程度のHiggsinoは250-500 GeVでカバー
- ・ 2-3 TeV LCで1 TeV Higgsino DMを網羅的に探索

DM探索など

- ・暗黒物質対生成
 ISR photonでtag
 - LHCとは見ている結合が異なる
 - Messenger scaleで数TeVまで 探索可能 (m_χはほほ√s/2まで)
- •2f精密測定による間接探索
 - WIMPがループで入る
 - 直接探索よりやや高い質量まで感度
- 固定標的実験
 軽いDM探索など

ILC 250 GeV	mass reach (3 σ)
Higgsino	150 GeV
MDM	330 GeV
Wino	190 GeV

Mono-photon search

arXiv:2001.03011

複数の

偏極を用いて暗黒物質のスピンの情報が得られる

∧は新物理のエネルギースケール

モデル非依存にm < √s/2の 暗黒物質を直接探索

単一光子信号 ~3 TeVスケールの新物理に感度 とバックグラウンド

固定標的実験@ILC

エネルギーは高いが結合が大きい ILCでもビームダンプや
 → コライダーでの新物理探索 取り出しラインを用いて
 エネルギーが低く結合が小さい 様々な実験が可能
 → 固定標的実験 現在検討中

Particle flow concept

Separating particles inside jets to do track-cluster matching

Requiring

- Highly-granular calorimeters
- Intelligent pattern recognition

Developed in ILC, first full application in CMS HGCAL at HL-LHC (partial use already in ATLAS/CMS)

Possible to obtain jet energy resolution of

~2 times better than calo-only

Resent focus: applying deep learning

Particle flow with Graph Neural Network

Flavor tagging with GNN/Transformer

Adding track-cluster matching to HGCAL

Applying algorithm developed at CMS flavor tagging: 5-10 better rejection than old (BDT) method

Block Block Block GravNet Block fiⁱ×V(d_{ik}) ange 64 GravNet GravNet GravNet Exc Dense Global Max(fik After GNN clustering Real coordinate × cluster cluster 1 cluster cluster cluster cluster cluster cluetor cluster 3 cluster 2 cluster 2

Good synergy with hadron colliders

Strange tagging

- High-momentum kaon in jet is a clue to strange jets - Contamination from g \rightarrow ss give relatively low momentum
- dE/dx is essential for Particle ID in ILD
 - As well as ToF, but only effective in low energy tracks (which are less important in strange tagging)
- Using newly-developed comprehensive PID \bullet

Giving much better separation than previous PID

Fractions of tracks having > 5 GeV

Fraction of true particles

True particle

Taikan Suehara, ILC-Japan 大学訪問シリーズ, 28 Jan. 2025, page 38

More

in ss

More

in gg

Kaons

Strange tagging: initial results

- First results obtained with CPID
 - No significant improvements from old PID: investigating
 - Compared with truth PID: some difference
 - FCC (1M) better than ILD Truth PID
 - Reason needs to be investigated

(maybe non-perfect assignment of truth PID)

Still needs study

s **vs d**

	s-tag 80% eff.		
Method	g-bkg acceptance (%)	d-bkg acceptance (%)	
ILD full sim. CPID	25.7	42.7	
ILD full sim. Truth PID	23.2	38.0	
FCC 1M (PID+tof)	20.3	29.6	

Strange tagging performance

FCCee plot (in their study)

Summary

- 世界には様々なHiggs factory計画がある
 - どれか一つ実現したい
 - 線形はエネルギー拡張性とコスト、円形はハドロンへの転換が売り
 - ILCは日本にとってよいオプション
- 各エネルギーで見たい物理のターゲットがある
 - Higgs/電弱精密測定による新物理探索
 - トップ精密測定、Higgs自己結合、Top Yukawa
 - 新物理直接探索 (1 TeV Higgsinoが最終ターゲット)
- 革新的な測定器開発へさまざまな努力が続く
 - 共同研究の種を探したい