

High granularity readout TPC technology in CEPC TDR stage

Huirong Qi

On behalf of the CEPC gaseous tracker R&D group

LCTPC Collaboration Meeting, 29-31 January 2025, Bonn

- Some inputs from IAS FP2025 meeting
- Motivation and physics requirements
- Status of TPC in CEPC TDR
- Simulation and prototype preparation
- Work plan and Summary

First Question: What does TPC technology need to face?

- Some inputs from IAS FP2025 meeting
 - Update CEPC and FCCee

High Energy Collider and Factories

CEPC Higgs Factory and SppC Layout in TDR/EDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW) , high energy gamma ray 100Kev~100MeV

The Status of CEPC Project-J. Gao

HKUST IAS Program on Fundamental Physics, Jan. 14-17, 2025 Hong

Kong

CEPC Operation Plan and Goals in TDR/EDR

(Operation mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
Run Time [years]		10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies. *** Calculated using 3,600 hours per year for data collection.

- 1: Higgs physics, Chinese Physics C Vol. 43, No. 4 (2019) 043002 https://arxiv.org/pdf/1810.09037
- 2: Flavor physics, https://arxiv.org/pdf/2412.19743 (2024)
- 3: New physics, to be published
- 4: QCD, to be published

CEPC Accelerator System Parameters in TDR/EDR

Linac							E	3005	ster				C	ollider		
Parameter	Symbol	Unit	Pasalina			tt	I	Ι	W		Ζ]	Higgs	Z	W	tī
rarameter	Symbol	Um	Dasenne			Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	s injection	Number of IPs			2	
Energy	E_{a}/E_{a+}	GeV	30	Circumfer.	km	mjeeden	ngoodon	ing of the in	100			Circumference (km)		10	0.0	
	6- 6 I			Injection	GeV				30			SR power per beam (MW)	er per beam (MW) 30			
Repetition rate	f_{rep}	Hz	100	Extraction	GeV	180	12	0	80	4	5.5	Energy (GeV)	120	45.5	80	180
Bunch				Bunch number		35	268	261+7	1297	3978	5967	Bunch number	268	11934	1297	35
number per			1 or 2	Maximum	nC	0.99	0.7	20.3	0.73	0.8	0.81	Emittance $\varepsilon_x / \varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
puise				bunch charge	ne	0.99	0.7	20.3	0.73	0.8	0.81	Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113
charge		nC	1.5 (3)	SR power	mA MW	0.11	0.94	0.98	2.85 0.94	0.323	0.49	Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Energy	σ_r		1.5×10^{-3}	Emittance	nm	2.83	1.2	26	0.56	0	.19	Beam-beam parameters $\xi_{\rm e}/\xi_{\rm e}$	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
spread	0 E		1.5 / 10	RF irequency RF voltage	GHZ	9.7	2.1	7	0.87	0	.46	RF frequency (MHz)		6	50	
Emittance	ε_r	nm	6.5	Full injection	h	0.1	0.14	0.16	0.27	1.8	0.8	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5
R	Running scenarios: Higgs 10 years, Z 2 years, W 1 year, ttbar 5 years Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹) 5 115 12 0.59															
Transport lines $\int_{0}^{\frac{F_{actory of}}{4 \text{ Million Higgs}}} \frac{1}{4 \text{ Trillion Z bosons}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Trillion Z bosons}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Trillion Z bosons}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Trillion Z bosons}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Trillion Z bosons}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \frac{1}{4 \text{ Million WW spairs}} \int_{0}^{\frac{F_{actory of}}{4 \text{ Million WW spairs}}} \int_{0}^{F_{actory of$																
DR	DR1.1GeV Booster 0~180GeV 0 Collider 180GeV 0 dump 0 dump 1) CEPC Accelerator TDR released on Dec. 25, 2023 2) CEPC Detector TDRrd (rd=reference design) will be completed by June 2025															
	Jie Gao's presentation															

https://indico.global/event/12247

CEPC Milestones, Timeline and Human Resources

The IDRC report is positive.

Our initial evaluation of the information that we have received has not shown any showstoppers, but R&D remains to be completed, and the industrialization of some of the more novel technologies has yet to be demonstrated. Furthermore, full-size prototypes are essential to confirm that the required performance can be achieved. The integration of services with the mechanical design will also require further work. In addition the interfaces between detectors require special attention. A key challenge is the development of multiple Front-End ASICs, a process that demands long-term investment and has proven difficult during upgrades of LHC experiments for the HL-LHC.

The CEPC International Detector Committee Meeting in 2024

The International Detector Review Committee (IDRC) held its inaugural meeting at IHEP, Oct 21-23, 2024, to review the status and plan of Ref-TDR.

https://indico.ihep.ac.cn/event/23265/ access key: cepcidrc

CEPC IAC meeting in 2024 was held from Oct. 29-30, 2024, IHEP IAC listened also the reports from IARC and IDRC on CEPC EDR progresses

https://indico.ihep.ac.cn/event/23450/timetable/

Final IAC report will come soon

Jie Gao's presentation

CEPC in Synergy with other Accelerator Projects in China

Project name	Machine type	Location	Cost (B RMB)	Completion time
СЕРС	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

Jie Gao's presentation

CEPC Planning, Schedule and Teams

TDR (2023), EDR(2027), start of construction (~2027)

-CEPC team (domestic)

CEPC accelerator and detector/experiments/theory group is an highly experienced team with strong international collaboration experiences. It has demonstrated its expertise and achievements in the following relevant projects, both domestic and international ones, such as: **BEPC-BEPCII (BES-BESIII), BFELP,** CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, BELLE-II, CLEO, Daya Bay, JUNO, LHAASO, etc.

-CEPC international partners and collaborators

Jie Gao's presentation

FCC integrated program -timeline

Note: FCC Conceptual Design Study started in 2014 leading to CDR in 2018

Ambitious schedule taking into account: past experience in building colliders at CERN approval timeline: ESPP, Council decision that HL-LHC will run until 2041 project preparatory phase with adequate resources immediately after Feasibility Study

Angeles Faus Golfe 's presentation

Reference layout and implementation: PA31 -90.7 km

Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment,** (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc.

"Avoid-reduce-compensate" principle of EU and French regulations

Overall lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold symmetry

Possible timeline till start of construction

7) Comments on the Japanese community approach

The first stage of the process, i.e. Starting first general discussion on a global project at a government level would be very useful, or even mandatory, for the other future very large projects in general. Since the initial decision will be made globally, it can access the global resources and responsibilities are shared in a fair way.

In the current situation in Europe, where the coming update of the European Strategy for Particle physics, 2025 to early 2026, will highly focus on the next CERN flagship project, it is not likely for Europe to take a lead in initiating a consensus building of a global Higgs factory project. China is also busy with the CEPC.

Could Japan take an initiative to invite other countries to exchange their view on the global project to start? What can we do to help this to happen?

Second Question: What does TPC technology need to solve?

• Motivation and physics requirements

Motivation and physics requirements

- A TPC is the main track detector for some candidate experiments at future e+e- colliders.
 - **Baseline detector concept** of ILD at ILC and CEPC
- TPC technology can be of interest for other future colliders (EIC, FCC-ee)
- Pixelated readout TPC can improve **PID requirements of Flavor Physics at e+e- collider**.

Motivation and physics requirements

- Circular e+e- collider operation stages in TDR: <u>10-years Higgs @3T</u> \rightarrow 2-years Z pole \rightarrow 1-year W
- Physics Requirements of the tracker
 - High momentum resolution for Higgs and Z
 - PID for the flavor physics and jet substructure

Calibration: Low luminosity Z at 3T Approximately 10³⁵cm⁻²s⁻¹ 1%-20% of high luminosity Z

- **Large Prototype** setup has been built to compare different detector readouts under identical conditions and to address integration issues.
 - PCMAG: B < 1.2T, bore Ø: 85cm
 - Two end plates for the LP made from Al with 7 module window
- LP Field Cage Parameter
 - Length = 61cm, inner \emptyset = 72cm drift field up to E \approx 350V/cm
 - Made of composite materials: 1.24 % X₀

JINST 5: P10011, 2010 JINST 16: P10023, 2021

https://doi.org/10.48550/arXiv.2006.08562 Huirong Oi

Readiness and status of TPC in LCTPC

- GridPix detector have moved from Timepix to Timepix3 ASICs. Tests with quad devices have been successfully done under B=1.0T at DESY in 2021 and 2022.
- Very high detection efficiency results in excellent tracking and dE/dx performance. Timepix4 development is ongoing.
 - All results showed that **a pixel TPC is realistic.(**~10⁶ events **)**

NÌM A535 (2004) 506-510 NIM A845 (2017) 233-235

Huirong Oi

Readiness and status of TPC in LCTPC

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
- Achievement so far:
 - IBF × Gain ~1 @ G=2000 validation with a hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

• Status of TPC in CEPC TDR

CEPC TDR-ref Detector Specifications

Sub-system	Key technology	Key Specifications		
Vertex 6-layer CMOS SPD		$\sigma_{r\varphi}$ ~ 3 $\mu m,$ X/X $_0$ < 0.15% per layer		
Tracking	CMOS SPD ITK, AC-LGAD SSD OTK, TPC + Vertex detector	$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2}\theta} (GeV^{-1})$		
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD SSD	Relative uncertainty ~ 3% $\sigma(t)$ ~ 30 ps		
EM calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Effective granularity ~ $1 \times 1 \times 2$ cm ³		
Hadron calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$		

- Design of the CEPC detector evolves with the R&D progressing and our better understanding of the physics reach.
- The key specifications continue to be optimized.

• From January 2024, the CEPC community initiated the technical comparison and selection, balancing factors including **R&D efforts, detector performance, cost, power consumption and construction risks**.

System	Technologies				
System	Baseline	For comparison			
Beam pipe	Φ20 mm				
LumiCal	SiTrk+Crystal				
Vertex	CMOS+Stitching	CMOS Pixel			
	CMOS SiDet ITrk		ius		
Tracker	Pixelated TPC	PID Drift Chamber	Rad		
Hacker		SSD / SPD OTrk			
	AC-LGAD OTTK	LGAD ToF			
ECAL	4D Crystal Bar	PS+SiPM+W, GS+SiPM, etc			
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, etc	↓		
Magnet	LTS	HTS			
Muon	PS bar+SiPM	RPC			
			-		
TDAQ	Conventional	Software Trigger			
BE electr.	Common	Independent			

Subsystem	Supported By	10.
Barrel Yoke	Base	
Magnet	Barrel Yoke	III.
Barrel HCAL	Barrel Yoke	
Barrel ECAL	Barrel HCAL	1
TPC+ Barrel OTK	Barrel ECAL	(200
ІТК	TPC	
Beampipe+VTX+LumiCal	ITK	
Endcap Yoke	Base	12
Endcap HCAL	Barrel HCAL	
Endcap ECAL+OTK	Barrel HCAL	

- The CEPC study group started to compare different technologies in January, 2024
- **By** the end of June, 2024 the baseline technologies were chosen.
- Multiple factors were considered in the process: performance, cost, R&D efforts, technology maturity, ...

Date	Actions and/or Expectations
Jan 1, 2024	Start the ref-TDR process by comparing different technologies
Jul 1, 2024	Baseline technologies are chosen; start to write TDR and address key issues
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto
Oct 21-23, 2024	Review of the Ref-TDR plan by the IDRC
Oct 23-27, 2024	Report at the CEPC workshop
Oct 29-30, 2024	Report progresses to the CEPC IAC
~January 2025	The first draft of the ref-TDR is ready for internal reviews
~April 2025	Finish international reviews
Jun 30, 2025	The ref-TDR is ready to release

Some contributions from LCTPC in 2024

- Discussion of a bi-weekly meeting has been raised to toward TDR preparation in LCTPC.
- Paul and Maxim joined the IDRC meeting as the TPC experts.
 - Pixelated readout TPC successfully has been selected as a benchmark detector in TRD stage.
- In ILD monthly meeting, Jochen gave a talk to indicate the status of TPC in TDR.

Baseline design of TPC technology in CEPC ref-TDR

- Tracking system: Silicon combined with gaseous chamber for the tracking and PID
 - Pixelated readout TPC as the **baseline gaseous detector** in the CEPC ref-TDR
 - Radius of TPC from 0.6m to 1.8m

Geometry of the tracking detector system of the CEPC TDR

Parameters of TPC technology in CEPC ref-TDR

TPC detector	Key Parameters
Modules per endcap	248 modules /endcap
Module size	206mm×224mm×161mm
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m
Potential at cathode	- 62,000 V
Gas mixture	T2K: Ar/CF4/iC4H10=95/3/2
Maximum drift time	34µs @ 2.75m
Detector modules	Pixelated Micromegas

Detailed design of TPC detector in ref-TDR

• Pixelated readout TPC R&D for Higgs and Z

Pixelated readout TPC for Higgs and Z

- Space charge in TPC chamber
 - Physics events: $H \rightarrow ss/cc/sb$, $Z \rightarrow qq...(High P_T)$
- Higgs/Z background sources
 - I. Pair production (Luminosity related)
 - II. Single Beam (BGB, BGH, Touschek Scatter...)
 - III. Synchrotron Radiation
 - IV. Injection background
- Simulation framework

Gamma (<10MeV) events at low luminosity Z @3T

γ energy distribution (10BX WholeLZ241204 log)

- 1.2e+7 tracks (γ.e-,e+...) in total
- 8.4e+6 γ tracks (~70.0%)
- 9.9e+4 γ will cross TPC and ¹/₂454 γ will interact with T2K gas through "compt, phot, conv" process, 96096 γ just cross TPC without energy deposit
- $\sim 1.3\% \gamma$ energy > 10 MeV
- Large number of 0.511 MeV γ (through e+ annihilation)
- Average energy deposit: 27.12 MeV/BX by sum all secondary e- dE, small less than the result from .root file (32.3 MeV/BX)
- So, low energy γ is the main contributions of beam background for TPC, similar to Higgs mode.

TPC distortion caused by primary ions

- Radial distortion (Δ_r) is much smaller than azimuthal distortion, almost imperceptible when along the track for most P_T track **IBF×Gain=1, same primary ion level**
 - Azimuthal distortion (Δ_{ro}) has much serous impact both on high/low P_T tracks
 - The maximum $\Delta_{r_{\varphi}}$ is 10 μ m@Higgs (acceptable)
 - The maximum Δ_{r_0} can be reduced to <100 μm @Z-pole (optimization of MDI)
 - Including Pair + Single Beam

Numerical calculation results of TPC distortion

Azimuthal distortio

Low P_T

 $\Delta_{\mathrm{r}\varphi} = \int_{0}^{L} \frac{\omega\tau}{1 + \omega^{2}\tau^{2}} \times \frac{E_{r}}{E_{z}} dz$

0.84

0.82

0.86 0.88

Radius [cm]

🔶 Radial distortion

High P_T

Simulation:

- With the full TPC geometry
- Ionization simulated with Garfield++
- Drift and diffusion from parameterized model based on Garfield++

Digitization (Refer to the TPC module and prototype):

- Electronic noise: 100 e-
- Amplification:
 - Number of electrons: 2000
 - Profile of signal size : 100µm

Simulation of TPC detector under 3T/2T and T2K mixture gas

Full Simulation of Pixelated readout TPC – Readout size

- Simulation of the readouts in pixel sizes
 - Actually, TPX3/4 option existing and the power consumption will be optimized.
 - Optimization started in this ref-TDR at IHEP to meet Higgs/Z at 3T.
 - Concerning pixel sizes for a TPC
 A pixel size of 55 (110) microns is optimal; one can profit from cluster counting and high precision tracking
 Larger pixel/pad sizes have larger ecoupancies and one should question
 - Larger pixel/pad sizes have larger occupancies and one should question whether they can handle the very high beam-beam rate

Peter's comment in CEPCWS at Hangzhou.

Pixel size = 110 um

Pixel size = 300 um

Pixel size = 500 um

Reconstruction:

- Reconstruction by counting the number of fired pixels over threshold
- Reconstruction with good linearity and reliability

Preliminary PID performance:

 π/k separation power simulation with different momentum

Separation power:
$$\frac{|\mu_A - \mu_B|}{\frac{\sigma_A + \sigma_B}{2}}$$

Full Simulation of Pixelated readout TPC – PID performance

- Performance of the pixelated readout TPC
 - Simulation of π/K , π/p , and K/p separation power with varying momentum and $\cos\theta$

Full Simulation of Pixelated readout TPC – Spatial resolution

Estimation of the spatial resolution using pixelated readout.

- The granularity readout and the transverse diffusion are also taken into consideration..
- TPC can operates effectively at 3T B-field.
- Pixelated readout TPC can achieves superior spatial resolution at 3T compared to 2T. Hit resolution (rφ)

Pad readout:

$$\sigma_{r\phi}^{\rm pad} = \sqrt{(\sigma_{r\phi0}^{\rm pad})^2 + \sigma_{\phi0}^2 \sin^2(\phi_{\rm track}) + L \frac{D_{r\phi}^2}{N_{\rm eff}} \sin(\theta_{\rm track})}$$

Pixel readout:

$$\sigma^{\rm pixel}_{r\phi} = \sqrt{(\sigma^{\rm pixel}_{r\phi0})^2 + LD^2_{r\phi}}$$

- Pixelated Readout Electronics: TEPix development
 - Multi-ROIC chips + Interposer PCB as RDL
 - Four-side bootable
- TEPix: Low power Energy/Timing measurement
 - Low power consumption: 0.5mW/ch@2nd Chip
 - Timing: 1 LSB(<10ns)
 - Noise: 300e- (high gain)

2.211111		
	Parameter	Spec
	Number of channels	128
	Dower Consumption	Analog<30mW
	Power Consumption	Digital<30mW
	ENC	~300 e(high gain)
	Dunamia Banga	25fC(high gain)
	Dynamic Kange	150fC(low gain)
	INL	<1%
	Time Resolution	<10ns

FEE ASIC: TEPIX—Test Results in May

5.6mm

Validation and commissioning of TPC prototype

- R&D on Pixelated TPC readout for CEPC TDR.
 - ASIC chip developed and 2nd prototype wafer has been done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
- Beam test of the pixelated readout TPC prototype in preparation. (May, 2025 at DESY)

Photos TPC modules assembled for the beam test

Work plan in CEPC stage

- Short term work plan (**before June, 2025**)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam test, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term work plan (**next 3-5 years**)
 - Development of TPC prototype with low power consumption FEE
 - Collaboration with LCTPC collaboration on beam test
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion, etc.

Milestones achieved	Before June, 2025	Beyond TDR
Ion backflow suppression	IBF×Gain<1 (Gain=2000)	Graphene technology
Pixelated readout prototype	Validation with beam test	Prototype with Multi-modules
Power consumption ASIC	~100mW/cm ² (60nm ASIC)	Optimization 330µm - 500µm
PID resolution	3% (dN/dx)	<3% (dN/dx)
Material budget (barrel)	Carbon Fiber	Full size prototype

Third Question: What's the critical issues and how to R&D?

We would like to discuss the critical issues we are facing and outline potential R&D strategies to address them in this LCTPC CM.

- Low luminosity Z pole (ALICE TPC)
- Pixelated TPC (Peter's R&D)
- ILD detector concept (FCCee and CEPC)

- In LCTPC collaboration, TPC detection technology R&D using the pad readout towards the pixelated readout for Higgs and Z run at the future e+e- collider.
- Pixelated TPC is chosen as the baseline gaseous tracker in CEPC ref-TDR. The simulation results show that both of PID performance and the momentum resolution are good. Validation with TPC prototype in preparation before TDR.
- Synergies with CEPC/DRD1/FCCee/EIC/LCTPC allow us to continue R&D and ongoing with the significant international collaboration. All of contributions will input to CEPC ref-TDR in next few months.

CEPC2025 workshop to be held in May in Barcelona. All information will be announced soon.

