Higgs at 250 GeV

Caterina Vernieri, Dirk Zerwas, Key Yagyu January 8, 2025

- Detector constraints (tracking) derived from measurement $2.1.4$
- Measurements at 250GeV $2.1.5$
- 2.1.6

LC Vision meeting

CERN

Thermal Thermal History of Universe

CPV and **Baryogenesis**

Stability of

Higgs Physics

Origin of Origin of **Canadian Strategier Contains and Contains and Principles**

Universe

Caterina Vernieri ・LC Vision・ January 8, 2025 2 [The Energy Frontier 2021 Snowmass Report](https://arxiv.org/abs/2211.11084)

Origin of Origin of EWSB?

Higgs Portal to Hidden Sectors?

Flavor?

Is it unique?

Fundamental or Composite?

Naturalness

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

Higgs at HL-LHC

Caterina Vernieri ・LC Vision・ January 8, 2025 **SLAC**

- **2-5% precision for many of the Higgs couplings**
- **BUT much larger uncertainties on Z_y** and charm and ~30% (?) on the **self-coupling**

SLAC Caterina Vernieri ・LC Vision・ January 8, 2025

Higgs at HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

Light Yukawa out of reach in the LHC environment

- **2-5% precision for many of the Higgs couplings**
- **BUT much larger uncertainties on Z_y** and charm and ~30% (?) on the **self-coupling**

What's next? How can we use the Higgs to find new physics?

No new particles discovered at the LHC so far…

[ArXiv:2209.07510](https://arxiv.org/abs/2209.07510) [ArXiv:2203.07622](https://arxiv.org/pdf/2203.07622)

From pp to e+e-

Initial state well defined & polarization \implies High-precision measurements Higgs bosons appear in 1 in 100 events \Rightarrow Clean experimental environment and trigger-less readout

Unprecedented precision unlocked with a well defined initial state

Higgs at e+e-

Unprecedented precision unlocked with a well defined initial state

Higgs at e+e-

H(ss), a new opportunity?

Tagging strange is a challenging but not impossible task for future detectors at e+e-

• As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt Ks • s-tagging demonstrated by SLD at SLC (e+e- at the Z) measured asymmetry in $Z(s\bar{s})$

7

-
-
- -

H(ss), a new opportunity?

Tagging strange is a challenging but not impossible task for future detectors at e+e-

-
-
- -

A limit on the BR H(ss) at \sim 5x above the SM value would **already be a significant probe to new physics. This would be achievable at future e+e-**

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt Ks • s-tagging demonstrated by SLD at SLC (e+e- at the Z) measured asymmetry in $Z(s\bar{s})$

One note: Polarization to compensate for luminosity

Projected sensitivity

2 ab-1 of polarized running is essentially equivalent to 5 ab-1 of unpolarized running within SMEFT analysis

Caterina Vernieri ・LC Vision・ January 8, 2025 **SLAC**

* indirect constraints

One note: Polarization to compensate for luminosity

Projected sensitivity

2 ab-1 of polarized running is essentially equivalent to 5 ab-1 of unpolarized running within SMEFT analysis

O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5 models of electroweak baryogenesis

* indirect constraints

- Absolute measurements of couplings at future e+e-.
- The Zγ interaction remains difficult to measure at all future machines
-
- Note that these results depend *on the assumptions on Run plans X-lumi/Y-energy*
	- Since Snowmass: FCC results are now taking into account 4IP, ie. \sim 5 \rightarrow 10/ab.

Higgs couplings at future machines

• Higher energy collision is required (factor 2 from 500 to 550 GeV e+e-) to further constraints the Higgs-top and H-self couplings

New comparisons are in preparation for the ESG, with also new HL-LHC & LC projections on self-coupling

Ingredients for Detector requirements

(Higgs) Physics drivers have informed preliminary detector designs *more to investigate* Beam structure and beam induced backgrounds add constraints

SLAC Caterina Vernieri ・LC Vision・ January 8, 2025

ILC and FCC-ee have different & complementary energy reach and goals

Physics benchmarks

• Measurement of the total ZH cross section with <1% uncertainty

• Measure Higgs boson mass to 0.01% accuracy and branching ratio to invisible particles using Z recoil, with 0.1% or better uncertainty.

• Precision measurement of electroweak parameters: $sin^2\theta_W$, Z and W masses and widths, ...

11

Unprecedented precision unlocked with a well defined initial state

How physics drives detector requirements

smearing due to Z momentum \sim smearing due to beam energy spread $dp_T /p_T \sim$ few x 10⁻⁵ $p_T \omega$ high momentum

[arXiv:1604.07524](https://arxiv.org/pdf/1604.07524) [arXiv:2203.07622](https://arxiv.org/pdf/2203.07622)

○ Drives need for high field magnets and high precision / low mass trackers

○ Drives requirement on charged track momentum and jet resolutions

Caterina Vernieri ・LC Vision・ January 8, 2025 **SLAC**

Precision challenges detector design

○ Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP $\langle 0.3\% \times 0$ per layer (ideally 0.1% X_0)

(Higgs) physics requirements for detectors

Higgs → bb/cc decays: Flavor tagging tagging at unprecedented level

Constant term describing **resolution** ~ 3-5µm **Multiple scattering term** decreasing with $p_T \sim 15 \mu m^*$ GeV

$$
\sigma_{d_0} = a \oplus \frac{b}{p_T \sin^{1/2}\theta}
$$

Precision challenges detector design

○ Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP $\langle 0.3\% \times 0$ per layer (ideally 0.1% X_0)

(Higgs) physics requirements for detectors

Higgs → bb/cc decays: Flavor tagging tagging at unprecedented level

Constant term describing **resolution** ~ 3-5µm **Multiple scattering term** decreasing with $p_T \sim 15 \mu m^*$ GeV

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

$$
\sigma_{d_0} = a \oplus \frac{b}{p_T \sin^{1/2}\theta}
$$

Several technologies are being studied to meet the physics performance

Sensors technology requirements for Vertex Detector

- **Sensor's contribution to the total material budget is 15-30%**
	- Services cables $+$ cooling $+$ support make up most of the detector mass
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression : ILC/C³ evolve time stamping towards O(1-100) ns (bunch-tagging)

14

Beam Format and Detector Design Requirements

ILC Trains at 5Hz, 1 train 1312 bunches Bunches are 369 ns apart

- **Very low duty cycle at LC** (0.5% ILC, 0.08% C3) allows for trigger-less readout and power pulsing
	- Factor of 100 power saving for front-end analog power
- Impact of beam-induced background to be mitigated through MDI and detector design
- keep occupancy low same as for FCC-ee

• **O(1-100) ns bunch identification capabilities** (hit-time-stamping) can further suppress beam-backgrounds and

C3 Trains at 120Hz, 1 train 133 bunches Bunches are 5 ns apart

CLIC Trains at 50Hz, 1 train 312 bunches Bunches are 0.5 ns apart

Outlook

- Higgs plays a central element for the **future colliders** • Two Higgs Factory proposals on the table after P5, ILC and FCC-ee, to push our understanding of **Higgs properties** far **beyond HL-LHC sensitivity reach**
	- Above 500 GeV e⁺e⁻ collisions can provide unique sensitivity to deviations in Higgs self**coupling** predicted by models with first-order electroweak phase transitions and **new physics**
- Many opportunities for creativity in the **design of Higgs factory detectors** • **Accelerator R&D** could enable new capabilities to boost "sustainably" collider performance

Same tools and methodology between ILC & FCC within Key4HEP

- ILC physics studies are based on full simulation data and some have been recently repeated for C³
	-
- CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole
	- assuming 10 μ s integration time

 $occupancy = hits/mm^2/BX \cdot size_{sensor} \cdot size_{cluster} \cdot safety$

Current status of beam-background studies [G. Marchiori \(2023\)](https://indico.cern.ch/event/1264807/contributions/5344221/attachments/2655841/4599495/2023_05_03%20-%20Constraints%20from%20accelerators%20to%20future%20ee%20factory%20experiments.pdf) [TDAQ@Annecy2024](https://indico.cern.ch/event/1307378/timetable/?view=standard#b-541444-parallel-3-detectors)

• Time distribution of hits per unit time and area on 1st layer ~ 4.4⋅10−3 hits/(ns⋅mm²) ≈ 0.03 hits/mm² /BX

Self-coupling at e+e- with single Higgs

The self-coupling could be determined also through single Higgs processes

- Relative enhancement of the e+e− → ZH cross-section and the H→W+W− partial width
- Need multiple Q² to identify the effects due to the self-coupling

[arXiv:1312.3322](https://arxiv.org/pdf/1312.3322.pdf) arXiv:1910.00012

New observables? Top-quark uncertainties? Which is the optimal energy scan?

Caterina Vernieri ・LC Vision・ January 8, 2025 **SLAC**

Higgs to strange coupling is an appealing signature to probe new physics

Beyond EFT, is there more?

1811.00017 1908.11376 2101.04119

Is the Higgs the source for all flavor?

- It allows for large couplings of additional Higgs to \bar{z} strange/light quarks
- No flavor-changing neutral currents

An option, **Spontaneous Flavor Violation** New physics can couple in a strongly flavor dependent way if it is aligned in the down-type quark or up-type quark sectors

P. Meade

SLAC

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
	- No PID worsen the results by 8%
- FCC for $Z(vv)$ only sets a limit of κ_s < 1.3 at 95% CL with 5/ab at 250 GeV and 2 IPs

Constraints on s-coupling

[arXiv:2203.07535](https://arxiv.org/pdf/2203.07535.pdf) [L. Gouskos @FCC week](https://indico.cern.ch/event/1202105/contributions/5396831/attachments/2661284/4610390/lg_fccee_higgscouplings.pdf)

21

Higgs-electron Yukawa

- **[Electron](https://arxiv.org/pdf/2107.02686.pdf)** Yukawa at FCC-ee with a dedicated 4 years run at the Higgs mass
	- \bullet K_e < 1.6 at 95% CL

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

[arXiv:2202.03285](https://arxiv.org/pdf/2202.03285.pdf) [arXiv:1912.04601](https://arxiv.org/abs/1912.04601) [e2019-900045-4](https://cds.cern.ch/record/2651299?ln=it) [NIMA 1059 \(2024\)](https://arxiv.org/abs/2307.01929)

- Timing (e.g. ECAL, HCAL or timing layer) for time-of-flight for momentum < 5 GeV
- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)
	- PID for momentum larger than few GeVs via ionisation loss measurement (dE/dx or dN/dx)
- Use $H \rightarrow ss$ to inform detector design, while monitoring other benchmarks' performance
	- RICH could improve reconstruction of K^{+/-} at high momentum (10-30 GeV)

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

