Higgs at 250 GeV

Caterina Vernieri, Dirk Zerwas, Key Yagyu January 8, 2025

2.1	Higgs	at 250 GeV 5 pages Dirk Zerwas, Caterina Vernieri, Kei Yagyu
	2.1.1	Higgs mass
	2.1.2	Expected measurement precision
	2.1.3	Impact of value/precision on theory
	2.1.4	Detector constraints (tracking) derived from measurement
	2.1.5	Measurements at 250GeV
	040	laste mensete the se

2.1.6 Interpretation

LC Vision meeting CFR

Thermal History of Universe

Naturalness

Fundamental or Composite?

Is it unique?

Origin of EWSB?

Higgs Portal to Hidden Sectors?

Higgs Physics

> CPV and Baryogenesis

Stability of

Universe

Origin of Flavor?

Origin of masses?

The Energy Frontier 2021 Snowmass Report

2

Higgs at HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for **Higgs physics:**

- 2-5% precision for many of the **Higgs couplings**
- BUT much larger uncertainties on $Z\gamma$ and charm and ~30% (?) on the self-coupling

Higgs at HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for **Higgs physics:**

- 2-5% precision for many of the **Higgs couplings**
- BUT much larger uncertainties on $Z\gamma$ and charm and ~30% (?) on the self-coupling

Light Yukawa out of reach in the LHC environment

No new particles discovered at the LHC so far...

What's next? How can we use the Higgs to find new physics?

<u>ArXiv:2209.07510</u> <u>ArXiv:2203.07622</u>

SLAC Caterina Vernieri · LC Vision · January 8, 2025

4

From pp to e+e-

Initial state well defined & polarization \implies High-precision measurements Higgs bosons appear in 1 in 100 events \Rightarrow Clean experimental environment and trigger-less readout

Higgs at e+e-

Unprecedented precision unlocked with a well defined initial state

Higgs at e+e-

Unprecedented precision unlocked with a well defined initial state

H(ss̄), a new opportunity?

Tagging strange is a challenging but not impossible task for future detectors at e+e-

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt Ks s-tagging demonstrated by SLD at SLC (e⁺e⁻ at the Z) measured asymmetry in $Z(s\bar{s})$

H(ss̄), a new opportunity?

Tagging strange is a challenging but not impossible task for future detectors at e+e-

A limit on the BR H(ss̄) at <u>~5x above the SM value</u> would already be a significant probe to new physics. This would be achievable at future e⁺e⁻

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt Ks s-tagging demonstrated by SLD at SLC (e⁺e⁻ at the Z) measured asymmetry in $Z(s\bar{s})$

Projected sensitivity

One note: Polarization to compensate for luminosity

2 ab⁻¹ of polarized running is essentially equivalent to 5 ab⁻¹ of unpolarized running within SMEFT analysis

Caterina Vernieri · LC Vision · January 8, 2025 SLAC

				FCC
	2/ab-250	+4/ab-500	5/ab-250	+1.5/ab-3
coupling	pol.	pol.	unpol.	unpol.
hZZ	0.50	0.35	0.41	0.34
$\ $ hWW	0.50	0.35	0.42	0.35
$\ hb\overline{b}$	0.99	0.59	0.72	0.62
$\ h au au$	1.1	0.75	0.81	0.71
$\ hgg$	1.6	0.96	1.1	0.96
$\ hcar{c}$	1.8	1.2	1.2	1.1
$\ h\gamma\gamma$	1.1	1.0	1.0	1.0
$\parallel \mathrm{h}\gamma Z$	9.1	6.6	9.5	8.1
$\parallel h \mu \mu$	4.0	3.8	3.8	3.7
$\ htt$	-	6.3	-	-
hhh	-	20	-	33%*
Γ_{tot}	2.3	1.6	1.6	1.4
$ \Gamma_{inv}$	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

* indirect constraints

Projected sensitivity

One note: Polarization to compensate for luminosity

2 ab⁻¹ of polarized running is essentially equivalent to 5 ab⁻¹ of unpolarized running within SMEFT analysis

O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

5	

_					FCC
ſ		2/ab-250	+4/ab-500	5/ab-250	+1.5/ab-3
	coupling	pol.	pol.	unpol.	unpol.
	hZZ	0.50	0.35	0.41	0.34
	hWW	0.50	0.35	0.42	0.35
	$\mathrm{h}b\overline{b}$	0.99	0.59	0.72	0.62
	$\mathrm{h} au au$	1.1	0.75	0.81	0.71
	hgg	1.6	0.96	1.1	0.96
	$\mathrm{h}car{c}$	1.8	1.2	1.2	1.1
	$\mathrm{h}\gamma\gamma$	1.1	1.0	1.0	1.0
	$\mathrm{h}\gamma Z$	9.1	6.6	9.5	8.1
	$h\mu\mu$	4.0	3.8	3.8	3.7
	htt	-	6.3	-	-
	hhh	-	20	-	33%*
	Γ_{tot}	2.3	1.6	1.6	1.4
	Γ_{inv}	0.36	0.32	0.34	0.30
	Γ_{other}	1.6	1.2	1.1	0.94

* indirect constraints

Higgs couplings at future machines

- Absolute measurements of couplings at future e+e-.
- The $Z\gamma$ interaction remains difficult to measure at all future machines
- Note that these results depend on the assumptions on Run plans X-lumi/Y-energy
 - Since Snowmass: FCC results are now taking into account 4IP, ie. ~ $5 \rightarrow 10/ab$.

• Higher energy collision is required (factor 2 from 500 to 550 GeV e+e-) to further constraints the Higgs-top and H-self couplings

New comparisons are in preparation for the ESG, with also new HL-LHC & LC projections on self-coupling

Ingredients for Detector requirements

(Higgs) Physics drivers have informed preliminary detector designs more to investigate Beam structure and beam induced backgrounds add constraints

Physics benchmarks

ILC and FCC-ee have different & complementary energy reach and goals

Caterina Vernieri · LC Vision · January 8, 2025 SLAC

• Measurement of the total ZH cross section with <1% uncertainty

 Measure Higgs boson mass to 0.01% accuracy and branching ratio to invisible particles using Z recoil, with 0.1% or better uncertainty.

• Precision measurement of electroweak parameters: $\sin^2\theta_W$, Z and W masses and widths, ...

11

How physics drives detector requirements

Unprecedented precision unlocked with a well defined initial state

smearing due to Z momentum ~ smearing due to beam energy spread $dp_T / p_T \sim few \times 10^{-5} p_T @ high momentum$

• Drives requirement on charged track momentum and jet resolutions

Caterina Vernieri · LC Vision · January 8, 2025 SLAC

arXiv:1604.07524 arXiv:2203.07622

Drives need for high field magnets and high precision / low mass trackers

(Higgs) physics requirements for detectors

Precision challenges detector design

Higgs → bb/cc decays: Flavor tagging tagging at unprecedented level

 Orives requirement on charged track impact parameter resolution → low mass trackers near IP
<0.3% X0 per layer (ideally 0.1% X₀)

$$\sigma_{d_0} = a \oplus \frac{b}{p_T sin^{1/2} \theta}$$

Constant term describing resolution ~ $3-5\mu$ m Multiple scattering term decreasing with $p_T \sim 15\mu$ m* GeV

(Higgs) physics requirements for detectors

Precision challenges detector design

Higgs → bb/cc decays: Flavor tagging tagging at unprecedented level

 Orives requirement on charged track impact parameter resolution → low mass trackers near IP
<0.3% X0 per layer (ideally 0.1% X₀)

$$\sigma_{d_0} = a \oplus \frac{b}{p_T sin^{1/2} \theta}$$

Constant term describing resolution ~ $3-5\mu$ m Multiple scattering term decreasing with $p_T \sim 15\mu$ m* GeV

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

- Sensor's contribution to the total material budget is 15-30% •
 - Services cables + cooling + support make up most of the detector mass
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression : ILC/C³ evolve time stamping towards ٠ O(1-100) ns (bunch-tagging)

Physics driven requirements	Running co	
$\sigma < 3 \mu m$		
Material budget 0.1%X ₀ /layer	Cooling	
r of the Inner most layer		

nstraints

Sensor specifications

>	Small Pixel	~15µm
· · · · · · · · · · · · · · · · · · ·	Thinning to	50 µm
>	Low Power	20-50 mW/cm ²
und>	Fast Readout	$\sim 1-10 \ \mu s$
age≯	Radiation Tolerance	10 MRad, 10 ¹⁴ n _{eq} / /cm ²

Beam Format and Detector Design Requirements

- Very low duty cycle at LC (0.5% ILC, 0.08% C³) allows for trigger-less readout and power pulsing
 - Factor of 100 power saving for front-end analog power
- Impact of beam-induced background to be mitigated through MDI and detector design
- keep occupancy low same as for FCC-ee

ILC Trains at 5Hz, 1 train 1312 bunches Bunches are 369 ns apart

C³ Trains at 120Hz, 1 train 133 bunches Bunches are 5 ns apart

CLIC Trains at 50Hz, 1 train 312 bunches Bunches are 0.5 ns apart

• O(1-100) ns bunch identification capabilities (hit-time-stamping) can further suppress beam-backgrounds and

Outlook

- Higgs plays a central element for the future colliders Two Higgs Factory proposals on the table after P5, ILC and FCC-ee, to push our understanding of Higgs properties far beyond HL-LHC sensitivity reach
 - Above 500 GeV e⁺e⁻ collisions can provide unique sensitivity to deviations in Higgs selfcoupling predicted by models with first-order electroweak phase transitions and new physics
- Many opportunities for creativity in the design of Higgs factory detectors · Accelerator R&D could enable new capabilities to boost "sustainably" collider performance

G. Marchiori (2023) Current status of beam-background studies TDAQ@Annecy2024

Same tools and methodology between ILC & FCC within Key4HEP

- ILC physics studies are based on full simulation data and some have been recently repeated for C³
- CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole
 - assuming 10μ s integration time

 $occupancy = hits/mm^2/BX \cdot size_{sensor} \cdot size_{cluster} \cdot safety$

• Time distribution of hits per unit time and area on 1st layer $\sim 4.4 \cdot 10^{-3}$ hits/(ns \cdot mm²) $\simeq 0.03$ hits/mm² /BX

Self-coupling at e+e- with single Higgs

The self-coupling could be determined also through single Higgs processes

- Relative enhancement of the $e+e- \rightarrow ZH$ cross-section and the $H \rightarrow W+W-$ partial width
- Need multiple Q² to identify the effects due to the self-coupling

New observables? Top-quark uncertainties? Which is the optimal energy scan?

Caterina Vernieri · LC Vision · January 8, 2025 SLAC

arXiv:1312.3322 arXiv:1910.00012

Beyond EFT, is there more?

Higgs to strange coupling is an appealing signature to probe new physics

Is the Higgs the source for all flavor?

An option, **Spontaneous Flavor Violation** New physics can couple in a strongly flavor dependent way if it is aligned in the down-type quark or up-type quark sectors

- It allows for large couplings of additional Higgs to $\overset{\Xi}{\prec}$ strange/light quarks
- No flavor-changing neutral currents •

P. Meade

SLAC Caterina Vernieri · LC Vision · January 8, 2025

1811.00017 1908.11376 2101.04119

Constraints on s-coupling

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
 - No PID worsen the results by 8%
- FCC for Z(vv) only sets a limit of $\kappa_s < 1.3$ at 95% CL with 5/ab at 250 GeV and 2 IPs

SLAC

arXiv:2203.07535 L. Gouskos @FCC week

21

Higgs-electron Yukawa

- Electron Yukawa at FCC-ee with a dedicated 4 years run at the Higgs mass
 - κ_e < 1.6 at 95% CL

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

arXiv:2202.03285 arXiv:1912.04601 <u>e2019-900045-4</u> NIMA 1059 (2024)

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

- Timing (e.g. ECAL, HCAL or timing layer) for time-of-flight for momentum < 5 GeV
- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)
 - PID for momentum larger than few GeVs via ionisation loss measurement (dE/dx or dN/dx)
- Use $H \rightarrow$ ss to inform detector design, while monitoring other benchmarks' performance
 - RICH could improve reconstruction of K^{+/-} at high momentum (10-30 GeV)

SLAC Caterina Vernieri · LC Vision · January 8, 2025

