Physics at a Linear Collider Facility Direct Production of New Particles

Howard Baer, Sven Heinemeyer, Sabine Kraml, Natsumi Nagata, Aleksander Filip Żarnecki

Dark matter

Nuclear

science

Linear Collider Vision Community Event 2025

A.F.Żarnecki (University of Warsaw)

Vacuum

decav

LCVision 2025

Selected from the current contents of the LCVision document section

Light, natural higgsinos at a LC

- In SUSY, minimization of scalar potential relates weak scale to parameters
- naturalness: SUSY preserving mu parameter ~100-350 GeV
- => W,Z,h, higgsinos~100-350 GeV
- other sparticle contributions suppressed by loop factor: can be much heavier

$$\begin{array}{rcl} \frac{m_Z^2}{2} &=& \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2\beta}{\tan^2\beta - 1} - \mu^2 \\ &\simeq& -m_{H_u}^2 - \Sigma_u^u(\tilde{t}_{1,2}) - \mu^2. \end{array}$$

for review, see: arXiv:2002.03013

Note: ATLAS/CMS each have 2-sigma excess in higgsino pair search channel!

Natural SUSY

Howard Baer

Smoking gun signature: light higgsinos at ILC: ILC is Higgs/higgsino factory!

 $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 \ell^+ \ell$ nuon pa electron pair (compact EM showers)

How do these signals look in the detector? (1)

 $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 + (\ell^+\ell^-\tilde{\chi}^0_1)$ measure $m(\ell^+\ell^-) < m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$ and $E(\ell^+\ell^-)$

Vs =500 GeV

$$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow (\ell \nu_\ell \tilde{\chi}_1^0) + (q \bar{q}' \tilde{\chi}_1^0)$$

soft visible particles since small higgsino mass gaps

HB, Berggren, Fujii, List, Lehtinen, Tanabe, Yan, arXiv: 1912.06643

LCVision 2025

Howard Baer

Natural higgsino discovery plane

Whereas HL-LHC can see only a portion of higgsino discovery plane, a LC with rs>2m(higgsino) can see all of it!

(higher density of dots: more theoretically plausible)

arXiv:2007.09252

Natural SUSY

ATLAS pMSSM-19 (-7) scan in M_{LSP} vs. $M_{\chi_1^{\pm}}$ (ATLAS-CONF-2023-055)

Natural SUSY

ILC projections on Higgsinos and $\tilde{\tau} \mathbf{s}$

From arXiv:2002.01239

Example results from the $\tilde{\tau}$ study at the ILC

LHC: CMS + ATLAS excess in $\gamma\gamma$ channel at 95 GeV, interpretation in 2HDM + singlet (S2HDM)

CMS + ATLAS excess in yy channel at 95 GeV:

[T. Biekötter, S. Heinemever. G. W. '23]

Example interpretation: S2HDM, type II and IV

 \Rightarrow Good description in extended Higgs sectors with an additional doublet and a singlet

A 95 GeV Higgs boson at e*e colliders, Georg Weiglein, LCWS2024, Tokyo, 07 / 2024

з

Prospects for coupling measurements of h125 and h95 at an e^+e^- Higgs factory

S2HDM, type II and IV:

[T. Biekötter, S. Heinemeyer, G. W. '23]

⇒ Precision measurements of the couplings of both h125 and h95 High sensitivity to the realised physics scenario (Yukawa type, …)

A 95 GeV Higgs boson at e*e colliders, Georg Weiglein, LCWS2024, Tokyo, 07 / 2024

ILC/ILD results on the Exotic scalar sensitivity in different decay channels

Electroweak-charged dark matter

Contract Street Contraction Contraction Contraction										
C	Juantum	5	DM could	Т	$M_{\rm DM}$ in TeV			$M_{\rm DM^{\pm}} - M_{\rm DM}$	$\sigma_{\rm SI}$ in	
$U(1)_Y$	$SU(2)_L$	$SU(3)_c$	Spin	decay into		tree	non-pert		in MeV	$10^{-46} {\rm cm}^2$
1/2	2	1	0	EL	Τ		0.54		350	$(0.4 \pm 0.6) 10^{-3}$
1/2	2	1	1/2	EH		1.1			341	$(0.3 \pm 0.6) 10^{-3}$
0	3	1	0	HH^*		2.0	2.5		166	0.23 ± 0.04
0	3	1	1/2	LH		2.4	2.6		166	0.23 ± 0.04
1	3	1	0	HH, LL		1.6	?		540	0.001 ± 0.001
1	3	1	1/2	LH		1.9	?		526	0.001 ± 0.001
1/2	4	1	0	HHH^*		2.4	?		353	0.27 ± 0.08
1/2	4	1	1/2	(LHH^*)		2.4	?		347	0.27 ± 0.08
3/2	4	1	0	HHH		2.9	?		729	0.15 ± 0.07
3/2	4	1	1/2	(LHH)		2.6	?		712	0.15 ± 0.07
0	5	1	0	(HHH^*H^*)		5.0	14		166	2.0 ± 0.5
0	5	1	1/2	none		4.4	14		166	2.0 ± 0.5

M. Cirelli, A. Strumia, J. Zupan, arXiv:2406.01705

(→: Sommerfeld enhancement)

The neutral component of an electroweak multiplet can be a DM candidate.

Thermal relic agrees with the observed DM density for a TeV-scale mass.

Lower masses are also allowed:

- Non-thermal production
- Rest of the DM density could be some other species

LCVision 2025

Electroweak-charged dark matter

Q	uantum	numbers	5	DM could	$M_{\rm DM}$ in TeV		$M_{\rm DM^{\pm}} - M_{\rm DM}$	$\sigma_{\rm SI}$ in
$U(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	Spin	decay into	tree non-pert		in MeV	$10^{-46} \mathrm{cm}^2$
1/2	2	1	0	EL	0.54		350	$(0.4 \pm 0.6) 10^{-3}$
1/2	2	1	1/2	EH	1.1		341	$(0.3 \pm 0.6) 10^{-3}$
0	3	1	0	HH^*	2.0	2.5	166	0.23 ± 0.04
0	3	1	1/2	LH	2.4	2.6	166	0.23 ± 0.04
1	3	1	0	HH, LL	1.6	?	540	0.001 ± 0.001
1	3	1	1/2	LH	1.9	?	526	0.001 ± 0.001
1/2	4	1	0	HHH^*	2.4	?	353	0.27 ± 0.08
1/2	4	1	1/2	(LHH^*)	2.4	?	347	0.27 ± 0.08
3/2	4	1	0	HHH	2.9	?	729	0.15 ± 0.07
3/2	4	1	1/2	(LHH)	2.6	?	712	0.15 ± 0.07
0	5	1	0	(HHH^*H^*)	5.0	14	166	2.0 ± 0.5
0	5	1	1/2	none	4.4	14	166	2.0 ± 0.5

M. Cirelli, A. Strumia, J. Zupan, arXiv:2406.01705

Direct detection rate tends to be suppressed since the scattering is induced at loop level. Some of the candidates can be probed in future DM direct detection experiments.

J. Hisano, K. Ishiwata, N. Nagata, JHEP 1506, 097 (2015).

Indirect detection is also promising, though it may suffer from uncertainty of DM profile.

V. Lefranc, E. Moulin, P. Panci, F. Sala, and J. Silk, JCAP 1609, 043 (2016).

A.F.Żarnecki (University of Warsaw)

LCVision 2025

Electroweak-charged dark matter

			And the second s					
C	Juantum	numbers	3	DM could	$M_{\rm DM}$ in TeV		$M_{\rm DM^{\pm}} - M_{\rm DM}$	$\sigma_{\rm SI}$ in
$U(1)_Y$	$SU(2)_L$	$SU(3)_c$	Spin	decay into	tree non-pert		in MeV	$10^{-46} \mathrm{cm}^2$
1/2	2	1	0	EL	0.54		350 ($0.4 \pm 0.6) 10^{-3}$
1/2	2	1	1/2	EH	1.1		341 ($0.3 \pm 0.6) 10^{-3}$
0	3	1	0	HH^*	2.0 2.5		166	0.23 ± 0.04
0	3	1	1/2	LH	2.4	2.6	166	0.23 ± 0.04
1	3	1	0	HH, LL	1.6	?	540	0.001 ± 0.001
1	3	1	1/2	LH	1.9	?	526	0.001 ± 0.001
1/2	4	1	0	HHH^*	2.4	?	353	0.27 ± 0.08
1/2	4	1	1/2	(LHH^*)	2.4	?	347	0.27 ± 0.08
3/2	4	1	0	HHH	2.9	?	729	0.15 ± 0.07
3/2	4	1	1/2	(LHH)	2.6	?	712	0.15 ± 0.07
0	5	1	0	(HHH^*H^*)	5.0	14	166	2.0 ± 0.5
0	5	1	1/2	none	4.4	14	166	2.0 ± 0.5

M. Cirelli, A. Strumia, J. Zupan, arXiv:2406.01705

 The charged-neutral mass splitting is very small, as it is induced by electroweak loop diagrams. This makes it difficult to probe this DM candidate at the LHC.

Disappearing track searches can have sensitivities to some cases (e.g., triplet).

• Linear colliders can probe EW-charged DM up to $M_{\rm DM} = \sqrt{s}/2$.

Mono-photon signature

CLIC 3 TeV, geY = 1

Mono-photon signature

